![江苏省南京市秦淮区2023-2024学年高一数学第二学期期末监测模拟试题含解析_第1页](http://file4.renrendoc.com/view5/M01/3A/00/wKhkGGZSu2aAbwJnAAJwGCw192A677.jpg)
![江苏省南京市秦淮区2023-2024学年高一数学第二学期期末监测模拟试题含解析_第2页](http://file4.renrendoc.com/view5/M01/3A/00/wKhkGGZSu2aAbwJnAAJwGCw192A6772.jpg)
![江苏省南京市秦淮区2023-2024学年高一数学第二学期期末监测模拟试题含解析_第3页](http://file4.renrendoc.com/view5/M01/3A/00/wKhkGGZSu2aAbwJnAAJwGCw192A6773.jpg)
![江苏省南京市秦淮区2023-2024学年高一数学第二学期期末监测模拟试题含解析_第4页](http://file4.renrendoc.com/view5/M01/3A/00/wKhkGGZSu2aAbwJnAAJwGCw192A6774.jpg)
![江苏省南京市秦淮区2023-2024学年高一数学第二学期期末监测模拟试题含解析_第5页](http://file4.renrendoc.com/view5/M01/3A/00/wKhkGGZSu2aAbwJnAAJwGCw192A6775.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京市秦淮区2023-2024学年高一数学第二学期期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为不同的平面,为不同的直线则下列选项正确的是()A.若,则 B.若,则C.若,则 D.若,则2.中,下列结论:①若,则,②,③,④若是锐角三角形,则,其中正确的个数是()A.1 B.2 C.3 D.43.一个长方体长、宽分别为5,4,且该长方体的外接球的表面积为,则该长方体的表面积为()A.47 B.60 C.94 D.1984.下面结论中,正确结论的是()A.存在两个不等实数,使得等式成立B.(0<x<π)的最小值为4C.若是等比数列的前项的和,则成等比数列D.已知的三个内角所对的边分别为,若,则一定是锐角三角形5.已知等差数列的公差,若的前项之和大于前项之和,则()A. B. C. D.6.在天气预报中,有“降水概率预报”,例如预报“明天降水的概率为80%”,这是指()A.明天该地区有80%的地方降水,有20%的地方不降水B.明天该地区降水的可能性为80%C.气象台的专家中有80%的人认为会降水,另外有20%的专家认为不降水D.明天该地区有80%的时间降水,其他时间不降水7.化简的结果是()A. B.C. D.8.用数学归纳法证明1+a+a2+…+an+1=(a≠1,n∈N*),在验证n=1成立时,左边的项是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a49.如图,圆的半径为1,是圆上的定点,是圆上的动点,角的始边为射线,终边为射线,过点作直线的垂线,垂足为,将点到直线的距离表示成的函数,则在上的图象大致为()A. B.C. D.10.直线与圆的位置关系是()A.相切 B.相离C.相交但不过圆心 D.相交且过圆心二、填空题:本大题共6小题,每小题5分,共30分。11.三棱锥的各顶点都在球的球面上,,平面,,,球的表面积为,则的表面积为_______.12.若向量,则与夹角的余弦值等于_____13.向边长为的正方形内随机投粒豆子,其中粒豆子落在到正方形的顶点的距离不大于的区域内(图中阴影区域),由此可估计的近似值为______.(保留四位有效数字)14.已知直线:与直线:互相平行,则直线与之间的距离为______.15.已知关于的不等式的解集为,则__________.16.若正实数满足,则的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆,直线平分圆.(1)求直线的方程;(2)设,圆的圆心是点,对圆上任意一点,在直线上是否存在与点不重合的点,使是常数,若存在,求出点坐标;若不存在,说明理由.18.在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.求证:(1)AC⊥BC1;(2)AC1∥平面CDB1.19.已知数列满足(,且),且,设,,数列满足.(1)求证:数列是等比数列并求出数列的通项公式;(2)求数列的前n项和;(3)对于任意,,恒成立,求实数m的取值范围.20.已知数列的前n项和为(),且满足,().(1)求证是等差数列;(2)求数列的通项公式.21.已知数列的前项和为,满足,数列满足.(1)求数列、的通项公式;(2),求数列的前项和;(3)对任意的正整数,是否存在正整数,使得?若存在,请求出的所有值;若不存在,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
通过对ABCD逐一判断,利用点线面的位置关系即可得到答案.【详解】对于A选项,有可能异面,故错误;对于B选项,可能相交或异面,故错误;对于C选项,,显然故正确;对于D选项,也有可能,故错误.所以答案选C.【点睛】本题主要考查直线与平面的位置关系,意在考查学生的空间想象能力,难度不大.2、C【解析】
根据正弦定理与诱导公式,以及正弦函数的性质,逐项判断,即可得出结果.【详解】①在中,因为,所以,所以,故①正确;②,故②正确;③,故③错误;④若是锐角三角形,则,均为锐角,因为正弦函数在上单调递增,所以,故④正确;故选C【点睛】本题主要考查命题真假的判定,熟记正弦定理,诱导公式等即可,属于常考题型.3、C【解析】
根据球的表面积公式求得半径,利用等于体对角线长度的一半可构造方程求出长方体的高,进而根据长方体表面积公式可求得结果.【详解】设长方体高为,外接球半径为,则,解得:长方体外接球半径为其体对角线长度的一半解得:长方体表面积本题正确选项:【点睛】本题考查与外接球有关的长方体的表面积的求解问题,关键是能够明确长方体的外接球半径为其体对角线长度的一半,从而构造方程求出所需的棱长.4、A【解析】
对各个选项逐一判断,对于选项A,由,代入计算,即可判断是否正确;对于选项B,设,结合函数的单调性,即可判断是否正确;对于选项C,由公比为为偶数,即可判断是否正确;对于选项D,由余弦定理,即可判断是否正确.【详解】对于选项A,两个不等实数,使得等式成立,故A正确;对于选项B,若设设,可得在递减,即函数的最小值为,故B错误;对于选项C,是等比数列的前项的和,当公比,为偶数时,则,均为,不能够成等比数列,故C错误;对于选项D,中,若,可得,即为锐角,不能判断一定是锐角三角形,故D错误.故选:A.【点睛】本题考查两角和的正弦公式、基本不等式和等比数列的性质,以及余弦定理的应用,属于基础题.5、C【解析】
设等差数列的前项和为,由并结合等差数列的下标和性质可得出正确选项.【详解】设等差数列的前项和为,由,得,可得,故选:C.【点睛】本题考查等差数列性质的应用,解题时要充分利用等差数列下标和与等差中项的性质,可以简化计算,考查分析问题和解决问题的能力,属于中等题.6、B【解析】
降水概率指的是降水的可能性,根据概率的意义作出判断即可.【详解】“明天降水的概率为80%”指的是“明天该地区降水的可能性是80%”,且明天下雨的可能性比较大,故选:B.【点睛】本题主要考查了概率的意义,掌握概率是反映出现的可能性大小的量是解题的关键,属于基础题.7、D【解析】
确定角的象限,结合三角恒等式,然后确定的符号,即可得到正确选项.【详解】因为为第二象限角,所以,故选D.【点睛】本题是基础题,考查同角三角函数的基本关系式,象限三角函数的符号,考查计算能力,常考题型.8、C【解析】
在验证时,左端计算所得的项,把代入等式左边即可得到答案.【详解】解:用数学归纳法证明,
在验证时,把当代入,左端.
故选:C.【点睛】此题主要考查数学归纳法证明等式的问题,属于概念性问题.9、B【解析】
计算函数的表达式,对比图像得到答案.【详解】根据题意知:到直线的距离为:对应图像为B故答案选B【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.10、C【解析】圆心到直线的距离,据此可知直线与圆的位置关系为相交但不过圆心.本题选择C选项.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据题意可证得,而,所以球心为的中点.由球的表面积为,即可求出,继而得出的值,求出三棱锥的表面积.【详解】如图所示:∵,平面,∴,又,故球心为的中点.∵球的表面积为,∴,即有.∴,.∴,,,.故的表面积为.故答案为:.【点睛】本题主要考查三棱锥的表面积的求法,球的表面积公式的应用,意在考查学生的直观想象能力和数学运算能力,属于基础题.12、【解析】
利用坐标运算求得;根据平面向量夹角公式可求得结果.【详解】本题正确结果:【点睛】本题考查向量夹角的求解,明确向量夹角的余弦值等于向量的数量积除以两向量模长的乘积.13、3.1【解析】
根据已知条件求出满足条件的正方形的面积,及到顶点的距离不大于1的区域(图中阴影区域)的面积比值等于频率即可求出答案.【详解】依题意得,正方形的面积,阴影部分的面积,故落在到正方形的顶点的距离不大于1的区域内(图中阴影区域)的概率,随机投10000粒豆子,其中1968粒豆子落在到正方形的顶点的距离不大于1的区域内(图中阴影区域)的频率为:,即有:,解得:,故答案为3.1.【点睛】几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件的基本事件对应的“几何度量”(A),再求出总的基本事件对应的“几何度量”,最后根据求解.利用频率约等于概率,即可求解。14、10【解析】
利用两直线平行,先求出,再由两平行线的距离公式求解即可【详解】由题意,,所以,,所以直线:,化简得,由两平行线的距离公式:.故答案为:10【点睛】本题主要考查两直线平行的充要条件,两直线和平行的充要条件是,考查两平行线间的距离公式,属于基础题.15、-2【解析】为方程两根,因此16、【解析】
由得,将转化为,整理,利用基本不等式即可求解。【详解】因为,所以.所以当且仅当,即:时,等号成立。所以的最小值为.【点睛】本题主要考查了构造法及转化思想,考查基本不等式的应用及计算能力,属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)直线的方程为.(2)见解析【解析】
(1)结合直线l平分圆,则可知该直线过圆心,代入圆心坐标,计算参数,即可.(2)结合A,M坐标,计算直线AM方程,采取假设法,假设存在该点,计算,对应项成比例,计算参数t,即可.【详解】(1)圆的标准方程为因为直线平分圆,所以,得,从而可得直线的方程为.(2)点,,直线方程为,假设存在点,满足条件,设,则有,当是常数时,是常数,∴,∴,∵,∴.∴存在满足条件.【点睛】本题考查了直线与圆的综合问题,第一问代入圆心坐标,即可,同时采取假设法,计算,利用对应项系数成比例,建立等式,即可.18、(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)由勾股定理可证得为直角三角形即可证得,由直棱柱可知面,可证得,根据线面垂直的判定定理可证得面,从而可得.(2)设与的交点为,连结,由中位线可证得,根据线面平行的判定定理可证得平面.试题解析:证明:(1)证明:,,为直角三角形且,即.又∵三棱柱为直棱柱,面,面,,,面,面,.(2)设与的交点为,连结,是的中点,是的中点,.面,面,平面.考点:1线线垂直,线面垂直;2线面平行.19、(1)见解析(2)(3).【解析】
(1)将式子写为:得证,再通过等比数列公式得到的通项公式.(2)根据(1)得到进而得到数列通项公式,再利用错位相减法得到前n项和.(3)首先判断数列的单调性计算其最大值,转换为二次不等式恒成立,将代入不等式,计算得到答案.【详解】(1)因为,所以,,所以是等比数列,其中首项是,公比为,所以,.(2),所以,由(1)知,,又,所以.所以,所以两式相减得.所以.(3),所以当时,,当时,,即,所以当或时,取最大值是.只需,即对于任意恒成立,即所以.【点睛】本题考查了等比数列的证明,错位相减法求前N项和,数列的单调性,数列的最大值,二次不等式恒成立问题,综合性强,计算量大,意在考查学生解决问题的能力.20、(1)证明见解析;(2).【解析】
(1)当时,由代入,化简得出,由此可证明出数列是等差数列;(2)求出数列的通项公式,可得出,由可得出在时的表达式,再对是否满足进行检验,可得出数列的通项公式.【详解】(1)当时,,,即,,等式两边同时除以得,即,因此,数列是等差数列;(2)由(1)知,数列是以为首项,以为公差的等差数列,,则.,得.不适合.综上所述,.【点睛】本题考查等差数列的证明,同时也考查了数列通项公式的求解,解题的关键就是利用关系式进行计算,考查推理能力与计算能力,属于中等题.21、(1),;(2)见解析;(3)存在,.【解析】
(1)利用可得,从而可得为等比数列,故可得其通项公式.用累加法可求的通项.(2)利用分组求和法可求,注意就的奇偶性分类讨论.(3)根据的通项可得,故考虑的解可得满足条件的的值.【详解】(1)在数列中,当时,.当时,由得,因为,故,所以数列是以为首项,为公比的等比数列即.在数列中,当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物联网技术在智能家居生态圈的应用前景
- 现代办公楼电力维护成本深度剖析
- 现代物流技术与医疗行业互补与共进
- Unit 4 Friends Forever Understanding ideas 说课稿-2024-2025学年高中英语外研版(2019)必修第一册001
- 2023八年级物理上册 第四章 在光的世界里第6节 神奇的眼睛说课稿(新版)教科版
- 6《观察土壤》说课稿-2023-2024学年科学四年级下册教科版
- 2023二年级语文上册 第八单元 24 风娃娃说课稿 新人教版
- 18《文言文二则 铁杵成针》(说课稿)2023-2024学年-统编版四年级语文下册
- 6 植物的后代与亲代(说课稿)-2024-2025学年科学五年级上册人教鄂教版001
- 2024-2025学年高中历史 专题2 东西方的先哲 二 古希腊的先哲说课稿 人民版选修4
- 2024年山东省济南市中考英语试题卷(含答案解析)
- 暑假作业 10 高二英语完形填空20篇(原卷版)-【暑假分层作业】2024年高二英语暑假培优练(人教版2019)
- 语文七年级下字帖打印版
- 北京地铁13号线
- 塑料成型模具设计(第2版)江昌勇课件1-塑料概述
- 产业园EPC总承包工程项目施工组织设计
- 方形补偿器计算
- 为加入烧火佬协会致辞(7篇)
- 儿科重症监护病房管理演示文稿
- 甲基异丁基甲酮化学品安全技术说明书
- 条形基础的平法识图课件
评论
0/150
提交评论