2023-2024学年浙江省杭州市杭州七县市区高一下数学期末综合测试试题含解析_第1页
2023-2024学年浙江省杭州市杭州七县市区高一下数学期末综合测试试题含解析_第2页
2023-2024学年浙江省杭州市杭州七县市区高一下数学期末综合测试试题含解析_第3页
2023-2024学年浙江省杭州市杭州七县市区高一下数学期末综合测试试题含解析_第4页
2023-2024学年浙江省杭州市杭州七县市区高一下数学期末综合测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年浙江省杭州市杭州七县市区高一下数学期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等比数列中,,且有,则()A. B. C. D.2.如果成等差数列,成等比数列,那么等于()A. B. C. D.3.如图是一个正方体的表面展开图,若图中“努”在正方体的后面,那么这个正方体的前面是()A.定 B.有 C.收 D.获4.若函数局部图象如图所示,则函数的解析式为A. B.C. D.5.已知集合,,则()A. B. C. D.6.一个不透明袋中装有大小、质地完成相同的四个球,四个球上分别标有数字2,3,4,6,现从中随机选取三个球,则所选三个球上的数字能构成等差数列(如:、、成等差数列,满足)的概率是()A. B. C. D.7.若则所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.若,,则的值是()A. B. C. D.9.,,是空间三条不同的直线,则下列命题正确的是A., B.,C.,,共面 D.,,共点,,共面10.若,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在扇形中,如果圆心角所对弧长等于半径,那么这个圆心角的弧度数为______.12.的值为__________.13.已知函数,数列的通项公式是,当取得最小值时,_______________.14.如图所示,梯形中,,于,,分别是,的中点,将四边形沿折起(不与平面重合),以下结论①面;②;③.则不论折至何位置都有_______.15.在中,两直角边和斜边分别为a,b,c,若则实数x的取值范围是________.16.在数列中,,,若,则的前项和取得最大值时的值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列前项和(),数列等差,且满足,前9项和为153.(1)求数列、的通项公式;(2)设,数列的前项和为,求及使不等式对一切都成立的最小正整数的值;(3)设,问是否存在,使得成立?若存在,求出m的值;若不存在,请说明理由.18.在中,内角、、所对的边分别为、、,且.(1)求;(2)若,,求.19.已知二次函数满足以下要求:①函数的值域为;②对恒成立。求:(1)求函数的解析式;(2)设,求时的值域。20.如图,矩形所在平面与以为直径的圆所在平面垂直,为中点,是圆周上一点,且,,.(1)求异面直线与所成角的余弦值;(2)设点是线段上的点,且满足,若直线平面,求实数的值.21.已知是复数,与均为实数,且复数在复平面上对应的点在第一象限,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】,,所以选A2、D【解析】

因为成等差数列,所以,因为成等比数列,所以,因此.故选D3、B【解析】

利用正方体及其表面展开图的特点以及题意解题,把“努”在正方体的后面,然后把平面展开图折成正方体,然后看“努”相对面.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“努”与面“有”相对,所以图中“努”在正方体的后面,则这个正方体的前面是“有”.故选:.【点睛】本题考查了正方形相对两个面上的文字问题,同时考查空间想象能力.注意正方体的空间图形,从相对面入手,分析及解答问题,属于基础题.4、D【解析】

由的部分图象可求得A,T,从而可得,再由,结合的范围可求得,从而可得答案.【详解】,;又由图象可得:,可得:,,,.,,又,当时,可得:,此时,可得:故选D.【点睛】本题考查由的部分图象确定函数解析式,常用五点法求得的值,属于中档题.5、A【解析】

首先求得集合,根据交集定义求得结果.【详解】本题正确选项:【点睛】本题考查集合运算中的交集运算,属于基础题.6、B【解析】

用列举法写出所有基本事件,确定成等差数列含有的基本事件,计数后可得概率.【详解】任取3球,结果有234,236,246,346共4种,其中234,246是成等差数列的2个基本事件,∴所求概率为.故选:B.【点睛】本题考查古典概型,解题时可用列举法列出所有的基本事件.7、C【解析】

根据已知不等式可得,;根据各象限内三角函数的符号可确定角所处的象限.【详解】由知:,在第三象限故选:【点睛】本题考查三角函数在各象限内的符号,属于基础题.8、B【解析】,,,故选B.9、B【解析】

解:因为如果一条直线平行于两条垂线中的一条,必定垂直于另一条.选项A,可能相交.选项C中,可能不共面,比如三棱柱的三条侧棱,选项D,三线共点,可能是棱锥的三条棱,因此错误.选B.10、C【解析】

由及即可得解.【详解】由,可得.故选C.【点睛】本题主要考查了同角三角函数的基本关系及二倍角公式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

根据弧长公式求解【详解】因为圆心角所对弧长等于半径,所以【点睛】本题考查弧长公式,考查基本求解能力,属基础题12、【解析】

直接利用诱导公式化简求值.【详解】,故答案为:.【点睛】本题考查诱导公式的应用,属于基础题.13、110【解析】

要使取得最小值,可令,即,对的值进行粗略估算即可得到答案.【详解】由题知:①.要使①式取得最小值,可令①式等于.即,.又因为,,则当时,,,①式.则当时,,,①式.当或时,①式的值会变大,所以时,取得最小值.故答案为:【点睛】本题主要考查数列的函数特征,同时考查了指数函数和对数函数的性质,核心素养是考查学生灵活运用知识解决问题的能力,属于难题.14、①②【解析】

根据题意作出折起后的几何图形,再根据线面平行的判定定理,线面垂直的判定定理,异面直线的判定定理等知识即可判断各选项的真假.【详解】作出折起后的几何图形,如图所示:.因为,分别是,的中点,所以是的中位线,所以.而面,所以面,①正确;无论怎样折起,始终有,所以面,即有,而,所以,②正确;折起后,面,面,且,故与是异面直线,③错误.故答案为:①②.【点睛】本题主要考查线面平行的判定定理,线面垂直的判定定理,异面直线的判定定理等知识的应用,意在考查学生的直观想象能力和逻辑推理能力,属于基础题.15、【解析】

计算得到,根据得到范围.【详解】两直角边和斜边分别为a,b,c,则,则,则,故.故答案为:.【点睛】本题考查了正弦定理和三角函数的综合应用,意在考查学生的综合应用能力.16、【解析】

解法一:利用数列的递推公式,化简得,得到数列为等差数列,求得数列的通项公式,得到,,得出所以,,,,进而得到结论;解法二:化简得,令,求得,进而求得,再由,解得或,即可得到结论.【详解】解法一:因为①所以②,①②,得即,所以数列为等差数列.在①中,取,得即,又,则,所以.因此,所以,,,所以,又,所以时,取得最大值.解法二:由,得,令,则,则,即,代入得,取,得,解得,又,则,故所以,于是.由,得,解得或,又因为,,所以时,取得最大值.【点睛】本题主要考查了数列的综合应用,以及数列的最值问题的求解,此类题目是数列问题中的常见题型,对考生计算能力要求较高,解答中确定通项公式是基础,合理利用数列的性质是关键,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等,属于中档试题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2),;(3)11.【解析】

(1)由数列的前项和结合求得数列的通项公式,再由,可得为等差数列,由已知求出公差,代入等差数列的通项公式得答案;(2)把数列,的通项公式代入,然后利用裂项相消法求和,可得使不等式对一切都成立的最小正整数的值;(3)分为偶数和奇数分类分析得答案.【详解】解:(1)由.故当时,.时,,而当时,,,又,即,为等差数列,于是.而,故,,因此,,即;(2)..易知单调递增,由,得,而,故,;(3),①当为奇数时,为偶数.此时,,,.②当为偶数时,为奇数.此时,.,(舍去).综上,存在唯一正整数,使得成立.【点睛】本题考查数列递推式,考查了等差关系的确定,训练了裂项相消法求数列的和,考查数列的函数特性,体现了分类讨论的数学思想方法,是中档题.18、(1)(2)【解析】

(1)利用正弦定理化简为,再利用余弦定理得到答案.(2)先用和差公式计算,再利用正弦定理得到.【详解】(1)由正弦定理,可化为,得,由余弦定理可得,有又由,可得.(2)由,由正弦定理有.【点睛】本题考查了正弦定理,余弦定理,和差公式,意在考查学生的计算能力.19、(1);(2)【解析】

(1)将写成顶点式,然后根据最小值和对称轴进行分析;(2)先将表示出来,然后利用换元法以及对勾函数的单调性求解值域.【详解】解:(1)∵又∵∴对称轴为∵值域为∴且∴,,则函数(2)∵∵∴令,则∴∵∴,则所求值域为【点睛】对于形如的函数,其单调增区间是:和,单调减区间是:和.20、(1);(2)1【解析】

(1)取中点,连接,即为所求角。在中,易得MC,NC的长,MN可在直角三角形中求得。再用余弦定理易求得夹角。(2)连接,连接和交于点,连接,易得,所以为的中位线,所以为中点,所以的值为1。【详解】(1)取中点,连接因为为矩形,分别为中点,所以所以异面直线与所成角就是与所成的锐角或直角因为平面平面,平面平面矩形中,,平面所以平面又平面,所以中,,所以又是圆周上点,且,所以中,,由余弦定理可求得所以异面直线与所成角的余弦值为(2)连接,连接和交于点,连接

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论