版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省丹东市第七中学2023-2024学年高一数学第二学期期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.我国古代数学名著《九章算术》第六章“均输”中有这样一个问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”(注:“均输”即按比例分配,此处是指五人所得成等差数列;“钱”是古代的一种计量单位),则分得最少的一个得到()A.钱 B.钱 C.钱 D.1钱2.已知直线,,若,则()A.2 B. C. D.13.在四边形中,如果,,那么四边形的形状是()A.矩形 B.正方形 C.菱形 D.直角梯形4.已知,且,则()A. B.7 C. D.5.等差数列的前项和为.若,则()A. B. C. D.6.已知关于的不等式的解集是,则的值是()A. B. C. D.7.三棱锥中,平面且是边长为的等边三角形,则该三棱锥外接球的表面积为()A. B. C. D.8.设等比数列的公比,前项和为,则()A. B. C. D.9.若,是夹角为的两个单位向量,则与的夹角为()A. B. C. D.10.已知,,则的最大值为()A.9 B.3 C.1 D.27二、填空题:本大题共6小题,每小题5分,共30分。11.过点作直线与圆相交,则在弦长为整数的所有直线中,等可能的任取一条直线,则弦长长度不超过14的概率为______________.12.过点作圆的两条切线,切点分别为,则=.13.数列满足,则的前60项和为_____.14.已知,则______.15.设是公差不为0的等差数列,且成等比数列,则的前10项和________.16.在中,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,内角,,的对边分别为,,,已知.(Ⅰ)求角的值;(Ⅱ)若,且的面积为,求的值.18.若数列中存在三项,按一定次序排列构成等比数列,则称为“等比源数列”。(1)在无穷数列中,,,求数列的通项公式;(2)在(1)的结论下,试判断数列是否为“等比源数列”,并证明你的结论;(3)已知无穷数列为等差数列,且,(),求证:数列为“等比源数列”.19.已知等差数列满足,,其前项和为.(1)求的通项公式及;(2)令,求数列的前项和,并求的值.20.已知和的交点为.(1)求经过点且与直线垂直的直线的方程(2)直线经过点与轴、轴交于、两点,且为线段的中点,求的面积.21.如图,是菱形,对角线与的交点为,四边形为梯形,,.(1)若,求证:平面;(2)求证:平面平面;(3)若,求直线与平面所成角的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
设所成等差数列的首项为,公差为,利用等差数列前项和公式及通项公式列出方程组,求出首项和公差,进而得出答案.【详解】由题意五人所分钱成等差数列,设得钱最多的为,则公差.所以,则.又,即则,分得最少的一个得到.故选:B【点睛】本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.2、D【解析】
当为,为,若,则,由此求解即可【详解】由题,因为,所以,即,故选:D【点睛】本题考查已知直线垂直求参数问题,属于基础题3、C【解析】试题分析:因为,所以,即四边形的对角线互相垂直,排除选项AD;又因为,所以四边形对边平行且相等,即四边形为平行四边形,但不能确定邻边垂直,所以只能确定为菱形.考点:1.向量相等的定义;2.向量的垂直;4、D【解析】
由平方关系求得,再由商数关系求得,最后由两角和的正切公式可计算.【详解】,,,,.故选:D.【点睛】本题考查两角和的正切公式,考查同角间的三角函数关系.属于基础题.5、D【解析】
根据等差数列片段和成等差数列,可得到,代入求得结果.【详解】由等差数列性质知:,,,成等差数列,即:本题正确选项:【点睛】本题考查等差数列片段和性质的应用,关键是根据片段和成等差数列得到项之间的关系,属于基础题.6、A【解析】
先利用韦达定理得到关于a,b的方程组,解方程组即得a,b的值,即得解.【详解】由题得,所以a+b=7.故选:A【点睛】本题主要考查一元二次不等式的解集,意在考查学生对该知识的理解掌握水平和分析推理能力.7、C【解析】根据已知中底面是边长为的正三角形,,平面,可得此三棱锥外接球,即为以为底面以为高的正三棱柱的外接球
∵是边长为的正三角形,∴的外接圆半径球心到的外接圆圆心的距离故球的半径故三棱锥外接球的表面积故选C.8、C【解析】
利用等比数列的前n项和公式表示出,利用等比数列的通项公式表示出,计算即可得出答案。【详解】因为,所以故选C【点睛】本题考查等比数列的通项公式与前n项和公式,属于基础题。9、A【解析】
根据条件可求出,,从而可求出,这样即可求出,根据向量夹角的范围即可求出夹角.【详解】由题得;,,所以;;又;的夹角为.故选.【点睛】考查向量数量积的运算及计算公式,向量长度的求法,向量夹角的余弦公式,向量夹角的范围.10、B【解析】
由已知,可利用柯西不等式,构造柯西不等式,即可求解.【详解】由已知,可知,,利用柯西不等式,可构造得,即,所以的最大值为3,故选B.【点睛】本题主要考查了柯西不等式的应用,其中解答中熟记柯西不等式,合理构造柯西不等式求解是解答的关键,着重考查了推理与运算能力,属于中档试题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据圆的性质可求得最长弦和最短弦的长度,从而得到所有弦长为整数的直线条数,从中找到长度不超过的直线条数,根据古典概型求得结果.【详解】由题意可知,最长弦为圆的直径:在圆内部且圆心到的距离为最短弦长为:弦长为整数的直线的条数有:条其中长度不超过的条数有:条所求概率:本题正确结果:【点睛】本题考查古典概型概率问题的求解,涉及到过圆内一点的最长弦和最短弦的长度的求解;易错点是忽略圆的对称性,造成在求解弦长为整数的直线的条数时出现丢根的情况.12、【解析】
如图,连接,在直角三角形中,所以,,,故.考点:1.直线与圆的位置关系;2.平面向量的数量积.13、1830【解析】
由题意可得,,,,,,…,,变形可得,,,,,,,,…,利用数列的结构特征,求出的前60项和.【详解】解:,∴,,,,,,…,,∴,,,,,,,,…,从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列,的前60项和为,故答案为:.【点睛】本题主要考查递推公式的应用,考查利用构造等差数列求数列的前项和,属于中档题.14、【解析】
由题意得出,然后在分式的分子和分母中同时除以,然后利用常见的数列极限可计算出所求极限值.【详解】由题意得出.故答案为:.【点睛】本题考查数列极限的计算,熟悉一些常见数列极限是解题的关键,考查计算能力,属于基础题.15、【解析】
利用等差数列的通项公式和等比数列的性质求出公差,由此能求出【详解】因为是公差不为0的等差数列,且成等比数列所以,即解得或(舍)所以故答案为:【点睛】本题考查等差数列前10项和的求法,解题时要认真审题,注意等比数列的性质合理运用.16、【解析】
由已知求得,进一步求得,即可求出.【详解】由,得,即,,则,,,则.【点睛】本题主要考查应用两角和的正切公式作三角函数的恒等变换与化简求值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用,化简得,然后利用正弦定理和余弦定理求解即可.(Ⅱ)利用面积公式得,得到,再利用,即可求解.【详解】(Ⅰ)由题意知,即,由正弦定理,得,①,由余弦定理,得,又因为,所以.(Ⅱ)因为,,由面积公式得,即.由①得,故,即.【点睛】本题考查正弦和余弦定理的应用,属于基础题.18、(1);(2)不是,证明见解析;(3)证明见解析.【解析】
(1)由,可得出,则数列为等比数列,然后利用等比数列的通项公式可间接求出;(2)假设数列为“等比源数列”,则此数列中存在三项成等比数列,可得出,展开后得出,然后利用数的奇偶性即可得出结论;(3)设等差数列的公差为,假设存在三项使得,展开得出,从而可得知,当,时,原命题成立.【详解】(1),得,即,且.所以,数列是以为首项,以为公比的等比数列,则,因此,;(2)数列不是“等比源数列”,下面用反证法来证明.假设数列是“等比源数列”,则存在三项、、,设.由于数列为单调递增的正项数列,则,所以.得,化简得,等式两边同时除以得,,且、、,则,,,,则为偶数,为奇数,等式不成立.因此,数列中不存在任何三项,按一定的顺序排列构成“等比源数列”;(3)不妨设等差数列的公差.当时,等差数列为非零常数列,此时,数列为“等比源数列”;当时,,则且,数列中必有一项,为了使得数列为“等比源数列”,只需数列中存在第项、第项使得,且有,即,,当时,即当,时,等式成立,所以,数列中存在、、成等比数列,因此,等差数列是“等比源数列”.【点睛】本题考查数列新定义“等比源数列”的应用,同时也考查了利用待定系数法求数列的通项,也考查“等比源数列”的证明,考查计算能力与推理能力,属于难题.19、(1),;(2),【解析】
(1)利用等差数列的通项公式及前n项的和公式可得答案;(2)利用“裂项求和”法可得答案.【详解】解:(1)设等差数列的公差为,由,得,又,解得.所以.所以.(2)由,得.设的前项和为,则.【点睛】本题主要考查等差数列的通项公式及前n项的和,及数列求和的“裂项相消法”,属于中档题.20、(1);(2)2【解析】
(1)联立两条直线的方程,解方程组求得点坐标,根据的斜率求得与其垂直直线的斜率,根据点斜式求得所求直线方程.(2)根据(1)中点的坐标以及为中点这一条件,求得两点的坐标,进而求得三角形的面积.【详解】解:(1)联立,解得交点的坐标为,∵与垂直,∴的斜率,∴的方程为,即.(2)∵为的中点,已知,,即,∴【点睛】本小题主要考查两条直线交点坐标的求法,考查两条直线垂直斜率的关系,考查直线的点斜式方程,考查三角形的面积公式以及中点坐标,属于基础题.21、(1)证明见解析;(2)证明见解析;(3)【解析】
(1)取的中点,连接,,从而可得为平行四边形,即可证明平面;(2)只需证明平面.即可证明平面平面;(3)作于,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版旅游商品销售合同模板(含行程安排)
- 2025-2030全球空调箔行业调研及趋势分析报告
- 2025-2030全球数字按键键盘行业调研及趋势分析报告
- 2025年度装修工程合同纠纷处理范本4篇
- 2024年平安、自护、维权知识竞赛试题及答案
- 2024年教师资格之中学教育知识与能力题库综合试卷A卷(附答案) (二)
- 维修门楼的简单合同书
- 2025年度个人二手车交易合同(二手车置换补贴版)3篇
- 2025版危险化学品废料处理购销合同范本3篇
- 二零二五年度虫害防治与现代农业技术集成合同4篇
- 《健康体检知识》课件
- 2023年护理人员分层培训、考核计划表
- 生产计划主管述职报告
- GB/T 44769-2024能源互联网数据平台技术规范
- 2025年四川省新高考八省适应性联考模拟演练(二)地理试卷(含答案详解)
- 【经典文献】《矛盾论》全文
- 部编版语文五年级下册 第一单元 专项训练课外阅读(含答案)
- 2024年宁夏回族自治区中考英语试题含解析
- 光伏发电项目试验检测计划
- 练字本方格模板
- 《老山界》第1第2课时示范公开课教学PPT课件【统编人教版七年级语文下册】
评论
0/150
提交评论