2023-2024学年广东省广州市增城区四校高一数学第二学期期末统考试题含解析_第1页
2023-2024学年广东省广州市增城区四校高一数学第二学期期末统考试题含解析_第2页
2023-2024学年广东省广州市增城区四校高一数学第二学期期末统考试题含解析_第3页
2023-2024学年广东省广州市增城区四校高一数学第二学期期末统考试题含解析_第4页
2023-2024学年广东省广州市增城区四校高一数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年广东省广州市增城区四校高一数学第二学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线的斜率是()A. B. C. D.2.在中,,则一定是()A.等腰三角形 B.直角三角形C.等边三角形 D.等腰直角三角形3.设是周期为4的奇函数,当时,,则()A. B. C. D.4.若为圆的弦的中点,则直线的方程是()A. B.C. D.5.若直线:与直线:垂直,则实数().A. B. C.2 D.或26.已知,满足,则()A. B. C. D.7.取一根长度为的绳子,拉直后在任意位置剪断,则剪得两段绳有一段长度不小于的概率是()A. B. C. D.8.若等差数列的前10项之和大于其前21项之和,则的值()A.大于0 B.等于0 C.小于0 D.不能确定9.袋中共有完全相同的4只小球,编号为1,2,3,4,现从中任取2只小球,则取出的2只球编号之和是偶数的概率为()A. B. C. D.10.化为弧度是A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的前项和为,,则__________.12.已知直线:与直线:互相平行,则直线与之间的距离为______.13.已知数列中,,,设,若对任意的正整数,当时,不等式恒成立,则实数的取值范围是______.14.已知数列满足:其中,若,则的取值范围是______.15.在等差数列中,若,则的前13项之和等于______.16.已知向量、满足||=2,且与的夹角等于,则||的最大值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点,,均在圆上.(1)求圆的方程;(2)若直线与圆相交于,两点,求的长;(3)设过点的直线与圆相交于、两点,试问:是否存在直线,使得恰好平分的外接圆?若存在,求出直线的方程;若不存在,请说明理由.18.在中,角,,所对的边分别为,,,且,.(1)求证:是锐角三角形;(2)若,求的面积.19.如图,已知以点为圆心的圆与直线相切.过点的动直线与圆A相交于M,N两点,Q是的中点,直线与相交于点P.(1)求圆A的方程;(2)当时,求直线的方程.20.一扇形的周长为20,当扇形的圆心角等于多少时,这个扇形的面积最大?最大面积是多少?21.已知椭圆(常数),点是上的动点,是右顶点,定点的坐标为.⑴若与重合,求的焦点坐标;⑵若,求的最大值与最小值;⑶若的最小值为,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

一般式直线方程的斜率为.【详解】直线的斜率为.故选A【点睛】此题考察一般直线方程的斜率,属于较易基础题目2、B【解析】

利用余弦定理、三角形面积公式、正弦定理,求得和,通过等式消去,求得的两个值,再判断三角形的形状.【详解】,又,,,又,,又,,,,,,解得:或,一定是直角三角形.【点睛】本题在求解过程中对存在两组解,要注意解答的完整性与严谨性,综合两种情况,再对的形状作出判断.3、A【解析】

.故选A.4、D【解析】

圆的圆心为O,求出圆心坐标,利用垂径定理,可以得到,求出直线的斜率,利用两直线垂直斜率关系可以求出直线的斜率,利用点斜式写出直线方程,最后化为一般式方程.【详解】设圆的圆心为O,坐标为(1,0),根据圆的垂径定理可知:,因为,所以,因此直线的方程为,故本题选D.【点睛】本题考查了圆的垂径定理、两直线垂直斜率的关系,考查了斜率公式.5、A【解析】试题分析:直线:与直线:垂直,则,.考点:直线与直线垂直的判定.6、A【解析】

根据对数的化简公式得到,由指数的运算公式得到=,由对数的性质得到>0,,进而得到结果.【详解】已知,=,>0,进而得到.故答案为A.【点睛】本题考查了指对函数的运算公式和对数函数的性质;比较大小常用的方法有:两式做差和0比较,分式注意同分,进行因式分解为两式相乘的形式;或者利用不等式求得最值,判断最值和0的关系.7、A【解析】

设其中一段的长度为,可得出另一段长度为,根据题意得出的取值范围,再利用几何概型的概率公式可得出所求事件的概率.【详解】设其中一段的长度为,可得出另一段长度为,由于剪得两段绳有一段长度不小于,则或,可得或.由于,所以,或.由几何概型的概率公式可知,事件“剪得两段绳有一段长度不小于”的概率为,故选:A.【点睛】本题考查长度型几何概型概率公式的应用,解题时要将问题转化为区间型的几何概型来计算概率,考查分析问题以及运算求解能力,属于中等题.8、C【解析】

根据条件得到不等式,化简后可判断的情况.【详解】据题意:,则,所以,即,则:,故选C.【点睛】本题考查等差数列前项和的应用,难度较易.等差数列前项和之间的关系可以转化为与的关系.9、C【解析】

先求出在编号为1,2,3,4的小球中任取2只小球的不同取法,再求出取出的2只球编号之和是偶数的不同取法,然后求概率即可得解.【详解】解:在编号为1,2,3,4的小球中任取2只小球,则有共6种取法,则取出的2只球编号之和是偶数的有共2种取法,即取出的2只球编号之和是偶数的概率为,故选:C.【点睛】本题考查了古典型概率公式,属基础题.10、D【解析】

由于,则.【详解】因为,所以,故选D.【点睛】本题考查角度制与弧度制的互化.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分析:由,当时,当时,相减可得,则,由此可以求出数列的通项公式详解:当时,当时由可得二式相减可得:又则数列是公比为的等比数列点睛:本题主要考查了等比数列的通项公式即数列递推式,在解答此类问题时看到,则用即可算出,需要注意讨论的情况。12、10【解析】

利用两直线平行,先求出,再由两平行线的距离公式求解即可【详解】由题意,,所以,,所以直线:,化简得,由两平行线的距离公式:.故答案为:10【点睛】本题主要考查两直线平行的充要条件,两直线和平行的充要条件是,考查两平行线间的距离公式,属于基础题.13、【解析】∵,(,),当时,,,…,,并项相加,得:,

∴,又∵当时,也满足上式,

∴数列的通项公式为,∴

,令(),则,∵当时,恒成立,∴在上是增函数,

故当时,,即当时,,对任意的正整数,当时,不等式恒成立,则须使,即对恒成立,即的最小值,可得,∴实数的取值范围为,故答案为.点睛:本题考查数列的通项及前项和,涉及利用导数研究函数的单调性,考查运算求解能力,注意解题方法的积累,属于难题通过并项相加可知当时,进而可得数列的通项公式,裂项、并项相加可知,通过求导可知是增函数,进而问题转化为,由恒成立思想,即可得结论.14、【解析】

令,逐步计算,即可得到本题答案.【详解】1.当时,因为,所以;2.当时,因为,所以;3.当时,①若,即,有,1)当,即,,由题,有,得,综上,无解;2)当,即,,由题,有,得,综上,无解;②若,,,1)当,即,,由题,有,得,综上,得;2)当,即,,由题,有,得,综上,得.所以,.故答案为:.【点睛】本题主要考查由数列递推公式确定参数取值范围的问题,分类讨论思想是解决本题的关键.15、【解析】

根据题意,以及等差数列的性质,先得到,再由等差数列的求和公式,即可求出结果.【详解】因为是等差数列,,所以,即,记前项和为,则.故答案为:【点睛】本题主要考查等差数列前项和的基本量的运算,熟记等差数列的性质以及求和公式即可,属于基础题型.16、【解析】

在中,令,可得,可得点在半径为的圆上,,可得,进而可得的最大值.【详解】∵向量、满足||=1,且与的夹角等于,如图在中,令,,可得可得点B在半径为R的圆上,1R4,R=1.则||的最大值为1R=4【点睛】本题考查了向量的夹角、模的运算,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)存在,和.【解析】

(1)根据圆心在,的中垂线上,设圆心的坐标为,根据求出的值,从而可得结果;(2)利用点到直线的距离公式以及勾股定理可得结果;(3)首先验证直线的斜率不存在时符合题意,然后斜率存在时,设出直线方程,与圆的方程联立,利用韦达定理,根据列方程求解即可.【详解】解:(1)由题意可得:圆心在直线上,设圆心的坐标为,则,解得,即圆心,所以半径,所以圆的方程为;(2)圆心到直线的距离为:,;(3)设,由题意可得:,且的斜率均存在,即,当直线的斜率不存在时,,则,满足,故直线满足题意,当直线的斜率存在时,设直线的方程为,由,消去得,则,由得,即,即,解得:,所以直线的方程为,综上所述,存在满足条件的直线和.【点睛】本题考查直线和圆的位置关系,注意对于直线要研究其斜率是否存在,另外利用韦达定理可以达到设而不求的目的,本题是中档题.18、(1)证明见解析(2)【解析】

(1)由正弦定理、余弦定理得,则角C最大,由余弦定理可得答案.

(2)由平面向量数量积的运算及三角形的面积公式结合(1)可得,利用面积公式可求解.【详解】【详解】

(1)由,根据正弦定理得,又,所以即,所以,因此边最大,即角最大.设则即,所以是锐角三角形.(2)由(1)和,即可得解得.所以在中,且所以的面积为.【点睛】本题考查正弦定理和余弦定理,数量积的定义的应用和求三角形面积.19、(1).(2)或【解析】

(1)圆心到切线的距离等于圆的半径,从而易得圆标准方程;(2)考虑直线斜率不存在时是否符合题意,在斜率存在时,设直线方程为,根据垂径定理由弦长得出圆心到直线的距离,现由点(圆心)到直线的距离公式可求得.【详解】(1)由于圆A与直线相切,∴,∴圆A的方程为.(2)①当直线与x轴垂直时,易知与题意相符,使.②当直线与x轴不垂直时,设直线的方程为即,连接,则,∵,∴,由,得.∴直线,故直线的方程为或.【点睛】本题考查直线与圆的位置关系,解题关键是垂径定理的应用,在圆中与弦长有关的问题通常都是用垂径定理解决.20、;;【解析】

设扇形的半径为,弧长为,利用周长关系,表

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论