四川资阳中学2023-2024学年高一数学第二学期期末联考试题含解析_第1页
四川资阳中学2023-2024学年高一数学第二学期期末联考试题含解析_第2页
四川资阳中学2023-2024学年高一数学第二学期期末联考试题含解析_第3页
四川资阳中学2023-2024学年高一数学第二学期期末联考试题含解析_第4页
四川资阳中学2023-2024学年高一数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川资阳中学2023-2024学年高一数学第二学期期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,随机地在图中撒一把豆子,则豆子落到阴影部分的概率是()A.12 B.34 C.12.读下面的程序框图,若输入的值为-5,则输出的结果是()A.-1 B.0 C.1 D.23.已知数列是各项均为正数且公比不等于的等比数列.对于函数,若数列为等差数列,则称函数为“保比差数列函数”.现有定义在上的如下函数:①;②;③;④,则为“保比差数列函数”的所有序号为()A.①② B.③④ C.①②④ D.②③④4.如图所示,在中,点D是边的中点,则向量()A. B.C. D.5.已知等差数列的前项和,若,则()A.25 B.39 C.45 D.546.已知两条平行直线和之间的距离等于,则实数的值为()A. B. C.或 D.7.若数列对任意满足,下面给出关于数列的四个命题:①可以是等差数列,②可以是等比数列;③可以既是等差又是等比数列;④可以既不是等差又不是等比数列;则上述命题中,正确的个数为()A.1个 B.2个 C.3个 D.4个8.圆与圆的位置关系是()A.相切 B.内含 C.相离 D.相交9.已知数列满足,则()A. B. C. D.10.已知直线的倾斜角为,在轴上的截距为2,则此直线方程为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在正方体中,是棱的中点,则异面直线与所成角的余弦值为__________.12.设,用,表示所有形如的正整数集合,其中且,为集合中的所有元素之和,则的通项公式为_______13.如图,矩形中,,,是的中点,将沿折起,使折起后平面平面,则异面直线和所成的角的余弦值为__________.14.终边经过点,则_____________15.数列满足:,,则______.16.如图,海岸线上有相距海里的两座灯塔A,B,灯塔B位于灯塔A的正南方向.海上停泊着两艘轮船,甲船位于灯塔A的北偏西,与A相距海里的D处;乙船位于灯塔B的北偏西方向,与B相距海里的C处,此时乙船与灯塔A之间的距离为海里,两艘轮船之间的距离为海里.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四边形是平行四边形,平面平面,,,,,,,为的中点.(1)求证:平面;(2)求证:平面平面.18.已知的内角所对的边分别为,且,.(1)若,求角的值;(2)若,求的值.19.在中,分别是角的对边,.(1)求的值;(2)若的面积,,求的值.20.已知数列满足,,.(1)求数列的通项公式;(2)设,求数列的前项和.21.在中,、、分别是内角、、的对边,且.(1)求角的大小;(2)若,的面积为,求的周长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

求出阴影部分的面积,然后与圆面积作比值即得.【详解】圆被8等分,其中阴影部分有3分,因此所求概率为P=3故选D.【点睛】本题考查几何概型,属于基础题.2、A【解析】

直接模拟程序框图运行,即可得出结论.【详解】模拟程序框图的运行过程如下:输入,进入判断结构,则,,输出,故选:A.【点睛】本题主要考查程序框图,一般求输出结果时,常模拟程序运行,列表求解.3、C【解析】

①,为“保比差数列函数”;②,为“保比差数列函数”;③不是定值,不是“保比差数列函数”;④,是“保比差数列函数”,故选C.考点:等差数列的判定及对数运算公式点评:数列,若有是定值常数,则是等差数列4、D【解析】

根据向量线性运算法则可求得结果.【详解】为中点本题正确选项:【点睛】本题考查根据向量线性运算,用基底表示向量的问题,属于常考题型.5、A【解析】

设等差数列的公差为,从而根据,即可求出,这样根据等差数列的前项和公式即可求出.【详解】解:设等差数列的公差为,则由,得:,,,故选:A.【点睛】本题主要考查等差数列的通项公式和等差数列的前项和公式,属于基础题.6、C【解析】

利用两条平行线之间的距离公式可求的值.【详解】两条平行线之间的距离为,故或,故选C.【点睛】一般地,平行线和之间的距离为,应用该公式时注意前面的系数要相等.7、C【解析】

由已知可得an﹣an﹣1=2,或an=2an﹣1,结合等差数列和等比数列的定义,可得答案.【详解】∵数列{an}对任意n≥2(n∈N)满足(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,∴an﹣an﹣1=2,或an=2an﹣1,∴①{an}可以是公差为2的等差数列,正确;②{an}可以是公比为2的等比数列,正确;③若{an}既是等差又是等比数列,即此时公差为0,公比为1,由①②得,③错误;④由(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,an﹣an﹣1=2或an=2an﹣1,当数列为:1,3,6,8,16……得{an}既不是等差也不是等比数列,故④正确;故选C.【点睛】本题以命题的真假判断与应用为载体,考查了等差,等比数列的相关内容,属于中档题.8、D【解析】

写出两圆的圆心,根据两点间距离公式求得两圆心的距离,发现,所以两圆相交。比较三者之间大小判断位置关系。【详解】两圆的圆心分别为:,,半径分别为:,,两圆心距为:,所以,两圆相交,选D。【点睛】通过比较圆心距和半径和与半径差直接的关系判断,即比较三者之间大小。9、B【解析】

分别令,求得不等式,由此证得成立.【详解】当时,,当时,,当时,,所以,所以,故选B.【点睛】本小题主要考查根据数列递推关系判断项的大小关系,属于基础题.10、D【解析】

由题意可得直线的斜率和截距,由斜截式可得答案.【详解】解:∵直线的倾斜角为45°,∴直线的斜率为k=tan45°=1,由斜截式可得方程为:y=x+2,故选:D.【点睛】本题考查直线的斜截式方程,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

假设正方体棱长,根据//,得到异面直线与所成角,计算,可得结果.【详解】假设正方体棱长为1,因为//,所以异面直线与所成角即与所成角则角为如图,所以故答案为:【点睛】本题考查异面直线所成的角,属基础题.12、【解析】

把集合中每个数都表示为2的0到的指数幂相加的形式,并确定,,,,每个数都出现次,于是利用等比数列求和公式计算,可求出数列的通项公式.【详解】由题意可知,,,,是0,1,2,,的一个排列,且集合中共有个数,若把集合中每个数表示为的形式,则,,,,每个数都出现次,因此,,故答案为:.【点睛】本题以数列新定义为问题背景,考查等比数列的求和公式,考查学生的理解能力与计算能力,属于中等题.13、【解析】

取中点为,中点为,连接,则异面直线和所成角为.在中,利用边长关系得到余弦值.【详解】由题意,取中点,连接,则,可得直线和所成角的平面角为,(如图)过作垂直于,平面⊥平面,,平面,,且,结合平面图形可得:,,,又=,∴=,∴在中,=,∴△DFC是直角三角形且,可得.【点睛】本题考查了异面直线的夹角,意在考查学生的计算能力和空间想象能力.14、【解析】

根据正弦值的定义,求得正弦值.【详解】依题意.故答案为:【点睛】本小题主要考查根据角的终边上一点的坐标求正弦值,属于基础题.15、【解析】

可通过赋值法依次进行推导,找出数列的周期,进而求解【详解】由,,当时,;当时,;当时,;当时,;当时,,当故数列从开始,以3为周期故故答案为:【点睛】本题考查数列的递推公式,能根据递推公式找出数列的规律是解题的关键,属于中档题16、5,【解析】

为等边三角形,所以算出,,再在中根据余弦定理易得CD的长.【详解】因为为等边三角形,所以.在中根据余弦定理解得.【点睛】此题考查余弦定理的实际应用,关键点通过已知条件转换为数学模型再通过余弦定理求解即可,属于较易题目.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】

(1)取中点,连接,,利用三角形中位线定理,结合已知,可以证明出四边形为平行四边形,利用平行四边形的性质和线面平行的判定定理可以证明出平面;(2)在中,利用余弦定理可以求出的值,利用勾股定理的逆定理可以得,由平面平面,利用面面垂直的性质定理,可以得到平面,最后利用面面垂直的判断定理可以证明出平面平面.【详解】(1)取中点,连接,,在中,因为是中点所以且又因为,,所以且,即四边形为平行四边形,所以,又平面,平面平面.(2)在中,,,由余弦定理得,进而由勾股定理的逆定理得又因为平面,平面,又因为平面所以平面又平面,所以平面平面【点睛】本题考查了线面平行、面面垂直的证明,考查了线面平行的判断定理、面面垂直的性质定理和判定定理,考查了推理论证能力.18、(1)或;(2)、.【解析】

(1)由先求的值,再求角即可;(2)先由求出,再根据求出即可.【详解】(1)由已知,又,所以,即,或;(2)因为,由可得,又因为,所以,即,总之、.【点睛】本题主要考查正弦定理、余弦定理及三角形面积公式的应用,属常规考题.19、(1)4;(2)【解析】

(1)利用两角差的正弦和正弦定理将条件化成,再利用余弦定理代入,即可求得的值;(2)由可求得,的值,再由面积公式求得,结合余弦定理可得,解方程即可得答案.【详解】(1)∵,∴,∴∴,解得:.(2),,,,,∵,∴.【点睛】本题考查两角差的正弦、正弦定理、余弦定理的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.20、(1);(2)【解析】

(1)由,构造是以为首项,为公比等比数列,利用等比数列的通项公式可得结果;(2)由(1)得,利用裂项相消可求.【详解】(1)由得:,即,且数列是以为首项,为公比的等比数列数列的通项公式为:(2)由(1)得:【点睛】关系式可构造为,中档题。21、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论