版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省齐市地区普高联谊高一下数学期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若正方体的棱长为,点,在上运动,,四面体的体积为,则()A. B. C. D.2.下列三角方程的解集错误的是()A.方程的解集是B.方程的解集是C.方程的解集是D.方程(是锐角)的解集是3.已知为锐角,,则()A. B. C. D.4.圆与直线的位置关系为()A.相离 B.相切C.相交 D.以上都有可能5.在等比数列{an}中,a2=8,a5=64,,则公比q为()A.2 B.3 C.4 D.86.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A. B. C. D.7.在空间直角坐标系中,轴上的点到点的距离是,则点的坐标是()A. B. C. D.8.已知锐角三角形的边长分别为1,3,,则的取值范围是()A. B. C. D.9.从装有两个红球和三个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球” B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球” D.“至少有一个黑球”与“都是红球”10.已知函数f(x)=x,x≥0,|x2A.a<0 B.0<a<1 C.a>1 D.a≥1二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量满足,则与的夹角的余弦值为__________.12.若,则函数的最小值是_________.13.在正方体的体对角线与棱所在直线的位置关系是______.14.经过点,且在两坐标轴上的截距之和为2的直线的一般式方程为________.15.已知数列的前n项和,则___________.16.已知数列的通项公式是,若将数列中的项从小到大按如下方式分组:第一组:,第二组:,第三组:,…,则2018位于第________组.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为了了解四川省各景点在大众中的熟知度,随机对岁的人群抽样了人,回答问题“四川省有哪几个著名的旅游景点?”统计结果如表.组号分组回答正确的人数回答正确的人数占本组的频率第组第组第组第组第组(1)分别求出的值;(2)从第,,组回答正确的人中用分层抽样的方法抽取人,求第,,组每组各抽取多少人?(3)通过直方图求出年龄的众数,平均数.18.已知数列满足:,,数列满足.(1)若数列的前项和为,求的值;(2)求的值.19.某校为创建“绿色校园”,在校园内种植树木,有A、B、C三种树木可供选择,已知这三种树木6年内的生长规律如下:A树木:种植前树木高0.84米,第一年能长高0.1米,以后每年比上一年多长高0.2米;B树木:种植前树木高0.84米,第一年能长高0.04米,以后每年生长的高度是上一年生长高度的2倍;C树木:树木的高度(单位:米)与生长年限(单位:年,)满足如下函数:(表示种植前树木的高度,取).(1)若要求6年内树木的高度超过5米,你会选择哪种树木?为什么?(2)若选C树木,从种植起的6年内,第几年内生长最快?20.已知圆(1)求圆关于直线对称的圆的标准方程;(2)过点的直线被圆截得的弦长为8,求直线的方程;(3)当取何值时,直线与圆相交的弦长最短,并求出最短弦长.21.在中,分别是内角所对的边,已知.(1)求角;(2)若,求的周长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由题意得,到平面的距离不变=,且,即可得三棱锥的体积,利用等体积法得.【详解】正方体的棱长为,点,在上运动,,如图所示:点到平面的距离=,且,所以.所以三棱锥的体积=.利用等体积法得.故选:C.【点睛】本题考查了正方体的性质,等体积法求三棱锥的体积,属于基础题.2、B【解析】
根据余弦函数的性质可判断B是错误的.【详解】因为,故无解,故B错.对于A,的解集为,故A正确.对于C,的解集是,故C正确.对于D,,.因为为锐角,,所以或或,所以或或,故D正确.故选:B.【点睛】本题考查三角方程的解,注意对于三角方程,我们需掌握有解的条件和其通解公式,而给定范围上的解,需结合整体的范围来讨论,本题属于基础题.3、A【解析】
先将展开并化简,再根据二倍角公式,计算可得。【详解】由题得,,整理得,又为锐角,则,,解得.故选:A【点睛】本题考查两角和差公式以及二倍角公式,是基础题。4、C【解析】
由直线方程可确定其恒过的定点,由点与圆的位置关系的判定方法知该定点在圆内,则可知直线与圆相交.【详解】由得:直线恒过点在圆内部直线与圆相交故选:【点睛】本题考查直线与圆位置关系的判定,涉及到直线恒过定点的求解、点与圆的位置关系的判定,属于常考题型.5、A【解析】,选A.6、B【解析】
首先根据两点都在角的终边上,得到,利用,利用倍角公式以及余弦函数的定义式,求得,从而得到,再结合,从而得到,从而确定选项.【详解】由三点共线,从而得到,因为,解得,即,所以,故选B.【点睛】该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果.7、A【解析】
由空间两点的距离公式,代入求解即可.【详解】解:由已知可设,由空间两点的距离公式可得,解得,即,故选:A.【点睛】本题考查了空间两点的距离公式,属基础题.8、B【解析】
根据大边对大角定理知边长为所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出的取值范围.【详解】由题意知,边长为所对的角不是最大角,则边长为或所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到,由于,解得,故选C.【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:为锐角;为直角;为钝角.9、C【解析】分析:利用对立事件、互斥事件的定义求解.详解:从装有两个红球和三个黑球的口袋里任取两个球,在A中,“至少有一个黑球”与“都是黑球”能同时发生,不是互斥事件,故A错误;在B中,“至少有一个黑球”与“至少有一个红球”能同时发生,不是互斥事件,故B错误;在C中,“恰好有一个黑球”与“恰好有两个黑球”不能同时发生,但能同时不发生,是互斥而不对立的两个事件,故C正确;在D中,“至少有一个黑球”与“都是红球”是对立事件,故D错误.故答案为:C点睛:(1)本题主要考查互斥事件和对立事件的定义,意在考查学生对这些基础知识的掌握水平.(2)互斥事件指的是在一次试验中,不可能同时发生的两个事件,对立事件指的是在一次试验中,不可能同时发生的两个事件,且在一次试验中,必有一个发生的两个事件.注意理解它们的区别和联系.10、B【解析】
令g(x)=0得f(x)=a,再利用函数的图像分析解答得到a的取值范围.【详解】令g(x)=0得f(x)=a,函数f(x)的图像如图所示,当直线y=a在x轴和直线x=1之间时,函数y=f(x)的图像与直线y=a有四个零点,所以0<a<1.故选:B【点睛】本题主要考查函数的图像和性质,考查函数的零点问题,意在考查学生对这些知识的理解掌握水平,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由得,结合条件,即可求出,的值,代入求夹角公式,即可求解.【详解】由得与的夹角的余弦值为.【点睛】本题考查数量积的定义,公式的应用,求夹角公式的应用,计算量较大,属基础题.12、【解析】
利用基本不等式可求得函数的最小值.【详解】,由基本不等式得,当且仅当时,等号成立,因此,当时,函数的最小值是.故答案为:.【点睛】本题考查利用基本不等式求函数的最值,考查计算能力,属于基础题.13、异面直线【解析】
根据异面直线的定义,作出图形,即可求解,得到答案.【详解】如图所示,与不在同一平面内,也不相交,所以体对角线与棱是异面直线.【点睛】本题主要考查了异面直线的概念及其判定,其中熟记异面直线的定义是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.14、【解析】
由题可知,直线在x上轴截距为-3,再利用截距式可直接求得直线方程【详解】∵直线过(0,5),∴直线在y轴上的截距为5,又直线在两坐标轴上的截距之和为2,∴直线在x轴上的截距为2-5=-3∴直线方程为,即5x-3y+15=0【点睛】直线方程有五种基本形式,在只知道横纵截距的情况下,截距式是最快捷的一种方式15、17【解析】
根据所给的通项公式,代入求得,并由代入求得.即可求得的值.【详解】数列的前n项和,则,而,,所以,则,故答案为:.【点睛】本题考查了数列前n项和通项公式的应用,递推法求数列的项,属于基础题.16、1【解析】
根据题意可分析第一组、第二组、第三组、…中的数的个数及最后的数,从中寻找规律使问题得到解决.【详解】根据题意:第一组有2=1×2个数,最后一个数为4;第二组有4=2×2个数,最后一个数为12,即2×(2+4);第三组有6=2×3个数,最后一个数为24,即2×(2+4+6);…∴第n组有2n个数,其中最后一个数为2×(2+4+…+2n)=4(1+2+3+…+n)=2n(n+1).∴当n=31时,第31组的最后一个数为2×31×1=1984,∴当n=1时,第1组的最后一个数为2×1×33=2112,∴2018位于第1组.故答案为1.【点睛】本题考查观察与分析问题的能力,考查归纳法的应用,从有限项得到一般规律是解决问题的关键点,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)第组抽取人,第组抽取人,第组抽取人;(3)40,.【解析】
(1)由频率分布表得第四组人数为25人,由频率分布直方图得第四组的频率为0.25,从而求出.由此求出各组人数,进而能求出,,,的值.(2)由第2,3,4组回答正确的人分别有18、27、9人,从中用分层抽样的方法抽取6人,由此能求出第2,3,4组每组各抽取多少人.(3)由频率分布直方图能求出年龄的众数,平均数.【详解】(1)由频率分布表得第四组人数为:人,由频率分布直方图得第四组的频率为,.第一组抽取的人数为:人,第二组抽取的人数为:人,第三组抽取的人数为:人,第五组抽取的人数为:人,.(2)第,,组回答正确的人分别有、、人,从中用分层抽样的方法抽取人,第组抽取:人,第组抽取:人,第组抽取:人.(3)由频率分布直方图得:年龄的众数为:,年龄的平均数为:【点睛】本题考查频率、频数、众数、平均数的求法,考查分层抽样的应用,是基础题,解题时要认真审题,注意频率分布直方图的性质的合理运用.18、(1);(2).【解析】
(1)构造数列等差数列求得的通项公式,再进行求和,再利用裂项相消求得;
(2)由题出现,故考虑用分为偶数和奇数两种情况进行计算.【详解】(1)由得,即,所以是以为首项,1为公差的等差数列,故,故.所以,故.
(2)当为偶数时,,当为奇数时,为偶数,
综上所述,当为偶数时,,当为奇数时,即.【点睛】本题主要考查了等差数列定义的应用,考查构造法求数列的通项公式与裂项求和及奇偶并项求和的方法,考查了分析问题的能力及逻辑推理能力,属于中档题.19、(1)选择C;(2)第4或第5年.【解析】
(1)根据已知求出三种树木六年末的高度,判断得解;(2)设为第年内树木生长的高度,先求出,设,则,.再利用分析函数的单调性,分析函数的图像得解.【详解】(1)由题意可知,A、B、C三种树木随着时间的增加,高度也在增加,6年末:A树木的高度为(米):B树木的高度为(米):C树木的高度为(米),所以选择C树木.(2)设为第年内树木生长的高度,则,所以,,.设,则,.令,因为在区间上是减函数,在区间上是增函数,所以当时,取得最小值,从而取得最大值,此时,解得,因为,,故的可能值为3或4,又,,即.因此,种植后第4或第5年内该树木生长最快.【点睛】本题主要考查等差数列和等比数列求和,考查函数的图像和性质的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于难题.20、(1);(2)或;(3)【解析】
(1)设,根据圆心与关于直线对称,列出方程组,求得的值,即可求解;(2)由圆的弦长公式,求得,根据斜率分类讨论,求得直线的斜率,即可求解;(3)由直线,得直线过定点,根据时,弦长最短,即可求解.【详解】(1)由题意,圆的圆心,半径为,设,因为圆心与关于直线对称,所以,解得,则,半径,所以圆标准方程为:(2)设点到直线距离为,圆的弦长公式,得,解得,①当斜率不存在时,直线方程为,满足题意②当斜率存在时,设直线方程为,则,解得,所以直线的方程为,综上,直线方程为或(3)由直线,可化为,可得直线过定点,当时,弦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024甲乙双方关于铜门制造与安装的合同协议书
- 专业渔业承包经营协议样本2024版B版
- 美术探索之路
- 复料厂的劳动合同(2篇)
- 大产权售房合同(2篇)
- 4 公民的基本权利和义务第2课时公民的基本义务(说课稿)2024-2025学年统编版道德与法治六年级上册
- 《矿井主要灾害事故防治与应急避灾》培训课件2025
- 工程承包居间简单合同范本
- 金融扶贫帮扶协议书
- 2024淘宝年度合作伙伴产品研发合同模板2篇
- FSSC运营管理制度(培训管理办法)
- 警察公安工作汇报ppt模板ppt通用模板课件
- 电动平板车的使用和管理细则
- 河北省初中生综合素质评价实施
- 明天会更好歌词完整版
- (完整)中考英语首字母填空高频词
- 影像科目标责任书
- 智能蒙皮天线分布式设计研究
- 通风与空调工程施工质量验收资料填写示例
- 美能达a7相机中文说明书
- 2021年高处安装、维护、拆除作业(特种作业)考试题库(含答案)
评论
0/150
提交评论