版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江苏省大丰市新丰中学高一数学第二学期期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知实心铁球的半径为,将铁球熔成一个底面半径为、高为的圆柱,则()A. B. C. D.2.在正方体中,,分别为棱,的中点,则异面直线与所成的角为A. B. C. D.3.函数图象向右平移个单位长度,所得图象关于原点对称,则在上的单调递增区间为()A. B. C. D.4.设,若,则数列是()A.递增数列 B.递减数列C.奇数项递增,偶数项递减的数列 D.偶数项递增,奇数项递减的数列5.已知等差数列中,若,则取最小值时的()A.9 B.8 C.7 D.66.在中,内角,,的对边分别为,,,若,且,则的形状为()A.等边三角形 B.等腰直角三角形C.最大角为锐角的等腰三角形 D.最大角为钝角的等腰三角形7.如图是一圆锥的三视图,正视图和侧视图都是顶角为120°的等腰三角形,若过该圆锥顶点S的截面三角形面积的最大值为2,则该圆锥的侧面积为A. B. C. D.48.已知等差数列的前项和为,,则()A. B. C. D.9.点、、、在同一个球的球面上,,.若四面体的体积的最大值为,则这个球的表面积为()A. B. C. D.10.函数的图像()A.关于点对称 B.关于点对称C.关于直线对称 D.关于直线对称二、填空题:本大题共6小题,每小题5分,共30分。11.如图记录了甲乙两名篮球运动员练习投篮时,进行的5组100次投篮的命中数,若这两组数据的中位数相等,平均数也相等,则______,_________.12.如果是奇函数,则=.13.如图,在正方体中,点是线段上的动点,则直线与平面所成的最大角的余弦值为________.14.将函数f(x)=cos(2x)的图象向左平移个单位长度后,得到函数g(x)的图象,则下列结论中正确的是_____.(填所有正确结论的序号)①g(x)的最小正周期为4π;②g(x)在区间[0,]上单调递减;③g(x)图象的一条对称轴为x;④g(x)图象的一个对称中心为(,0).15.已知直线与圆相交于两点,则______.16.已知{}是等差数列,是它的前项和,且,则____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,与的夹角是(1)计算:①,②;(2)当为何值时,与垂直?18.已知函数,若,且,,求满足条件的,.19.已知公差不为零的等差数列{an}和等比数列{bn}满足:a1=b1=3,b2=a4,且a1,a4,a13成等比数列.(1)求数列{an}和{bn}的通项公式;(2)令cn=an•bn,求数列{cn}的前n项和Sn.20.已知函数.(1)解关于的不等式;(2)若关于的不等式的解集为,求实数的值.21.某校研究性学习小组从汽车市场上随机抽取辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于公里和公里之间,将统计结果分成组:,,,,,绘制成如图所示的频率分布直方图.(1)求直方图中的值;(2)求辆纯电动汽车续驶里程的中位数;(3)若从续驶里程在的车辆中随机抽取辆车,求其中恰有一辆车的续驶里程为的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据变化前后体积相同计算得到答案.【详解】故答案选B【点睛】本题考查了球体积,圆柱体积,抓住变化前后体积不变是解题的关键.2、A【解析】
如图做辅助线,正方体中,且,P,M为和中点,,则即为所求角,设边长即可求得.【详解】如图,取的中点,连接,,.因为为棱的中点,为的中点,所以,所以,则是异面直线与所成角的平面角.设,在中,,,则,即.【点睛】本题考查异面直线所成的角,解题关键在于构造包含异面直线所成角的三角形.3、A【解析】
根据三角函数的图象平移关系结合函数关于原点对称的性质求出的值,结合函数的单调性进行求解即可.【详解】函数图象向右平移个单位长度,得到,所得图象关于原点对称,则,得,,∵,∴当时,,则,由,,得,,即函数的单调递增区间为,,∵,∴当时,,即,即在上的单调递增区间为,故选:A.【点睛】本题主要考查三角函数的图象和性质,求出函数的解析式结合三角函数的单调性是解决本题的关键.4、C【解析】
根据题意,由三角函数的性质分析可得,进而可得函数为减函数,结合函数与数列的关系分析可得答案。【详解】根据题意,,则,指数函数为减函数即即即即,数列是奇数项递增,偶数项递减的数列,故选:C.【点睛】本题涉及数列的函数特性,利用函数单调性,通过函数的大小,反推变量的大小,是一道中档题目。5、C【解析】
是等差数列,先根据已知求出首项和公差,再表示出,由的最小值确定n。【详解】由题得,,解得,那么,当n=7时,取到最小值-49.故选:C【点睛】本题考查等差数列前n项和,是基础题。6、D【解析】
先由余弦定理,结合题中条件,求出,再由,求出,进而可得出三角形的形状.【详解】因为,所以,,所以.又,所以,则的形状为最大角为钝角的等腰三角形.故选D【点睛】本题主要考查三角形的形状的判定,熟记余弦定理即可,属于常考题型.7、B【解析】
过该圆锥顶点S的截面三角形面积最大是直角三角形,根据面积为2求出圆锥的母线长,再根据正视图求圆锥底面圆的半径,最后根据扇形面积公式求圆锥的侧面积.【详解】过该圆锥顶点S的截面三角形面积最直角三角形,设圆锥的母线长和底面圆的半径分别为,则,即,又,所以圆锥的侧面积;故选B.【点睛】本题考查三视图及圆锥有关计算,此题主要难点在于判断何时截面三角形面积最大,要结合三角形的面积公式,当,即截面是等腰直角三角时面积最大.8、A【解析】
利用等差数列下标和的性质可计算得到,由计算可得结果.【详解】由得:本题正确选项:【点睛】本题考查等差数列性质的应用,涉及到等差数列下标和性质和等差中项的性质应用,属于基础题.9、D【解析】
根据几何体的特征,小圆的圆心为,若四面体的体积取最大值,由于底面积不变,高最大时体积最大,可得与面垂直时体积最大,从而求出球的半径,即可求出球的表面积.【详解】根据题意知,、、三点均在球心的表面上,且,,,则的外接圆半径为,的面积为,小圆的圆心为,若四面体的体积取最大值,由于底面积不变,高最大时体积最大,所以,当与面垂直时体积最大,最大值为,,设球的半径为,则在直角中,,即,解得,因此,球的表面积为.故选:D.【点睛】本题考查的知识点是球内接多面体,球的表面积,其中分析出何时四面体体积取最大值,是解答的关键.10、B【解析】
根据关于点对称,关于直线对称来解题.【详解】解:令,得,所以对称点为.当,为,故B正确;令,则对称轴为,因此直线和均不是函数的对称轴.故选:B【点睛】本题主要考查正弦函数的对称性问题.正弦函数根据关于点对称,关于直线对称.二、填空题:本大题共6小题,每小题5分,共30分。11、3.5.【解析】
根据茎叶图,将两组数据按照从小到大顺序排列,由中位数和平均数相等,即可解得的值.【详解】甲乙两组数据的中位数相等,平均数也相等对于甲组将数据按照从小到大顺序排列后可知,中位数为65.所以乙组中位数也为65.根据乙组数据可得则由两组的平均数相等,可知两组的总数也相等,即解得故答案为:;【点睛】本题考查了茎叶图的简单应用,由茎叶图求中位数和平均数,属于基础题.12、-2【解析】试题分析:∵,∴,∴,∴=-2考点:本题考查了三角函数的性质点评:对于定义域为R的奇函数恒有f(0)=0.利用此结论可解决此类问题13、【解析】
作的中心,可知平面,所以直线与平面所成角为,当在中点时,最大,求出即可。【详解】设正方体的边长为1,连接,由于为正方体,所以为正四面体,棱长为,为等边三角形,作的中心,连接,,由于为正四面体,为的中心,所以平面,所以为直线与平面所成角,则当在中点时,最大,当在中点时,由于为正四面体,棱长为,等边三角形,为的中心,所以,,所以直线与平面所成的最大角的余弦值为故直线与平面所成的最大角的余弦值为故答案为【点睛】本题考查线面所成角,解题的关键是确定当在中点时,最大,考查学生的空间想象能力以及计算能力。14、②④.【解析】
利用函数的图象的变换规律求得的解析式,再利用三角函数的周期性、单调性、图象的对称性,即可求解,得到答案.【详解】由题意,将函数的图象向左平移个单位长度后,得到的图象,则函数的最小正周期为,所以①错误的;当时,,故在区间单调递减,所以②正确;当时,,则不是函数的对称轴,所以③错误;当时,,则是函数的对称中心,所以④正确;所以结论正确的有②④.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的图象与性质的判定,其中解答熟记三角函数的图象变换,以及三角函数的图象与性质,准确判定是解答的关键,着重考查了推理与运算能力,属于中档试题.15、【解析】
首先求出圆的圆心坐标和半径,计算圆心到直线的距离,再计算弦长即可.【详解】圆,,圆心,半径.圆心到直线的距离..故答案为:【点睛】本题主要考查直线与圆的位置关系中的弦长问题,熟练掌握弦长公式为解题的关键,属于简单题.16、【解析】
根据等差数列的性质得,由此得解.【详解】解:由题意可知,;同理。故.故答案为:【点睛】本题考查了等差数列的性质,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)①;②;(2).【解析】
利用数量积的定义求解出的值;(1)将所求模长平方,从而得到关于模长和数量积的式子,代入求得模长的平方,再开平方得到结果;(2)向量互相垂直得到数量积等于零,由此建立方程,解方程求得结果.【详解】由已知得:(1)①②(2)若与垂直,则即:,解得:【点睛】本题考查利用数量积求解向量的模长、利用数量积与向量垂直的关系求解参数的问题.求解向量的模长关键是能够通过平方运算将问题转化为模长和数量积运算的形式,从而使问题得以求解.18、,【解析】
利用三角恒等变换,化简的解析式,从而得出结论.【详解】解:,∴,待定系数,可得,又,∴,∴,.【点睛】本题主要考查三角恒等变换,属于基础题.19、(1)an=2n+1;bn=3n;(2)Sn=n•3n+1.【解析】
(1)利用基本元的思想,结合等差数列、等比数列的通项公式、等比中项的性质列方程,解方程求得的值,从而求得数列的通项公式.(2)利用错位相减求和法求得数列的前项和.【详解】(1)公差d不为零的等差数列{an}和公比为q的等比数列{bn},a1=b1=3,b2=a4,且a1,a4,a13成等比数列,可得3q=3+3d,a1a13=a42,即(3+3d)2=3(3+12d),解得d=2,q=3,可得an=3+2(n﹣1)=2n+1;bn=3n;(2)cn=an•bn=(2n+1)•3n,前n项和Sn=3•3+5•32+7•33+…+(2n+1)•3n,3Sn=3•32+5•33+7•34+…+(2n+1)•3n+1,两式相减可得﹣2Sn=9+2(32+33+…+3n)﹣(2n+1)•3n+1=9+2•(2n+1)•3n+1,化简可得Sn=n•3n+1.【点睛】本小题主要考查等差数列,等比数列通项公式,考查错位相减求和法,考查运算求解能力,属于中档题.20、(1)①当时,不等式的解集为;②当时,由,则不等式的解集为;③当时,由,则不等式的解集为;(2)【解析】
(1)不等式,可化为,分三种情况讨论,分别利用一元二次不等式的解法求解即可;(2)不等可化为,根据1和4是方程的两根,利用韦达定理列方程求解即可.【详解】(1)不等式,可化为:.①当时,不等式的解集为;②当时,由,则不等式的解集为;③当时,由,则不等式的解集为;(2)不等可化为:.由不等式的解集为可知,1和4是方程的两根.故有,解得.由时方程为的根为1或4,则实数的值为1.【点睛】本题主要考查一元二次不等式的解法以及分类讨论思想的应用,属于中档题..分类讨论思想的常见类型
,⑴问题中的变量或含有需讨论的参数的,要进行分类讨论的;
⑵问题中的条件是分类给出的;
⑶解题过程不能统一叙述,必须分类讨论的;
⑷涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.21、(1)(2)(3)【解析】
(1)利用小矩形的面积和为,求得值,即可求得答案;(2)中位数的计算方法为:把频率分布直方图分成两个面积相等部分的平行于轴的直线横坐标,即可求得答案;(3)据直方图求出续驶里程在和续驶里程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能消费设备的供应链管理与物流协同优化考核试卷
- 光气及光气化产品危险性分析及安全措施考核试卷
- 农药制造中的用户需求分析与产品创新考核试卷
- 中等教育的音乐欣赏与音乐创作考核试卷
- DB11∕T 1776-2020 水利工程绿色施工规范
- 楼阁国画课件教学课件
- 科普宣传课件教学课件
- 淮阴工学院《建筑结构试验与测试技术》2022-2023学年第一学期期末试卷
- 淮阴工学院《机械制造技术》2022-2023学年第一学期期末试卷
- 石油钻采机械相关项目投资计划书范本
- 植物的象征意义
- 基础护理质量标准及考核评分表
- 夏商周考古课件 第5章 西周文化(1、2节)
- 商务条款响应表
- 二年级上册美术教案-7. 去远航 -冀教版
- 二年级上册语文课件-10《日月潭》|人教(部编版) (共19张PPT)
- 《诗情画意》教学设计
- 中华文化与传播教材课件
- Unit3 Sports and Fitness Reading for writing健康生活讲义-高中英语人教版(2019)必修第三册
- Unit 4 Viewing Workshop 课件-高中英语北师大版(2019)选择性必修第二册
- 血尿尿频尿急尿痛课件
评论
0/150
提交评论