版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省九师联盟商开大联考数学高一下期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.把函数图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再把所得曲线向右平移个单位长度,最后所得曲线的一条对称轴是()A. B. C. D.2.某市举行“精英杯”数学挑战赛,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校所有学生的成绩均在区间内,其频率分布直方图如图所示,该校有130名学生获得了复赛资格,则该校参加初赛的人数约为()A.200 B.400 C.2000 D.40003.已知函数图象的一条对称轴是,则函数的最大值为()A.5 B.3 C. D.4.某班有男生30人,女生20人,按分层抽样方法从班级中选出5人负责校园开放日的接待工作.现从这5人中随机选取2人,至少有1名男生的概率是()A. B. C. D.5.已知向量,,若,,则的最大值为()A. B. C.4 D.56.已知函数的图像关于直线对称,则可能取值是().A. B. C. D.7.已知在R上是奇函数,且满足,当时,,则()A.-2 B.2 C.-98 D.988.以下给出了4个命题:(1)两个长度相等的向量一定相等;(2)相等的向量起点必相同;(3)若,且,则;(4)若向量的模小于的模,则.其中正确命题的个数共有()A.3个 B.2个 C.1个 D.0个9.向量,,且,则等于()A. B. C.2 D.1010.已知在角终边上,若,则()A. B.-2 C.2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知一扇形的半径为,弧长为,则该扇形的圆心角大小为______.12.方程的解为_________.13.已知数列是等差数列,若,,则________.14.在中,分别是角的对边,,且的周长为5,面积,则=______15.不等式的解集为______.16.函数的最大值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知以点为圆心的圆与直线相切.过点的动直线与圆A相交于M,N两点,Q是的中点,直线与相交于点P.(1)求圆A的方程;(2)当时,求直线的方程.18.16种食品所含的热量值如下:111123123164430190175236430320250280160150210123(1)求数据的中位数与平均数;(2)用这两种数字特征中的哪一种来描述这个数据集更合适?19.已知数列的前n项和为,且,求数列的通项公式.20.如图,渔船甲位于岛屿的南偏西方向的处,且与岛屿相距12海里,渔船乙以10海里/小时的速度从岛屿出发沿正北方向航行,若渔船甲同时从处出发沿北偏东的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求的值.21.如下图,长方体ABCD-A1B1C1D1中,(1)当点E在AB上移动时,三棱锥D-D(2)当点E在AB上移动时,是否始终有D1
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
先求出图像变换最后得到的解析式,再求函数图像的对称轴方程.【详解】由题得图像变换最后得到的解析式为,令,令k=-1,所以.故选A【点睛】本题主要考查三角函数图像变换和三角函数图像对称轴的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.2、A【解析】
由频率和为1,可算得成绩大于90分对应的频率,然后由频数÷总数=频率,即可得到本题答案.【详解】由图,得成绩大于90分对应的频率=,设该校参加初赛的人数为x,则,得,所以该校参加初赛的人数约为200.故选:A【点睛】本题主要考查频率直方图的相关计算,涉及到频率和为1以及频数÷总数=频率的应用.3、B【解析】
函数图象的一条对称轴是,可得,解得.可得函数,再利用辅助角公式、倍角公式、三角函数的有界性即可得出.【详解】函数图象的一条对称轴是,,解得.则函数当时取等号.函数的最大值为1.故选.【点睛】本题主要考查三角函数的性质应用以及利用二倍角公式和辅助角公式进行三角恒等变换.4、D【解析】
由题意,男生30人,女生20人,按照分层抽样方法从中抽取5人,则男生为人,女生为,从这5人中随机选取2人,共有种,全是女生的只有1种,所以至少有1名女生的概率为,故选D.5、A【解析】
设,由可得点的轨迹方程,再对两边平方,利用一元二次函数的性质求出最大值,即可得答案.【详解】设,,∵,∴,整理得:.∵,∴,当时,的最大值为,∴的最大值为.故选:A.【点睛】本题考查向量模的最值、模的坐标运算、一元二次函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意坐标法的运用.6、D【解析】
根据正弦型函数的对称性,可以得到一个等式,结合四个选项选出正确答案.【详解】因为函数的图像关于直线对称,所以有,当时,,故本题选D.【点睛】本题考查了正弦型函数的对称性,考查了数学运算能力.7、A【解析】
由在R上是奇函数且周期为4可得,即可算出答案【详解】因为在R上是奇函数,且满足所以因为当时,所以故选:A【点睛】本题考查的是函数的奇偶性和周期性,较简单.8、D【解析】
利用向量的概念性质和向量的数量积对每一个命题逐一分析判断得解.【详解】(1)两个长度相等的向量不一定相等,因为它们可能方向不同,所以该命题是错误的;(2)相等的向量起点不一定相同,只要它们方向相同长度相等就是相等向量,所以该命题是错误的;(3)若,且,则是错误的,举一个反例,如,不一定相等,所以该命题是错误的;(4)若向量的模小于的模,则,是错误的,因为向量不能比较大小,因为向量既有大小又有方向,故该命题不正确.故选:D【点睛】本题主要考查向量的概念和数量积的计算,意在考查学生对这些知识的理解掌握水平.9、B【解析】
先由数量积为,得出,求出的坐标,利用模长的坐标公式求解即可.【详解】由题意可得,则则故选:B【点睛】本题主要考查了向量模的坐标表示以及向量垂直的坐标表示,属于基础题.10、C【解析】
由正弦函数的定义求解.【详解】,显然,∴.故选C.【点睛】本题考查正弦函数的定义,属于基础题.解题时注意的符号.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用扇形的弧长除以半径可得出该扇形圆心角的弧度数.【详解】由扇形的弧长、半径以及圆心角之间的关系可知,该扇形的圆心角大小为.故答案为:.【点睛】本题考查扇形圆心角的计算,解题时要熟悉扇形的弧长、半径以及圆心角之间的关系,考查计算能力,属于基础题.12、【解析】
根据特殊角的三角函数及正切函数的周期为kπ,即可得到原方程的解.【详解】则故答案为:【点睛】此题考查学生掌握正切函数的图象及周期性,是一道基础题.13、【解析】
求出公差,利用通项公式即可求解.【详解】设公差为,则所以故答案为:【点睛】本题主要考查了等差数列基本量的计算,属于基础题.14、【解析】
令正弦定理化简已知等式,得到,代入题设,求得的长,利用三角形的面积公式表示出的面积,代入已知等式,再将,即可求解.【详解】在中,因为,由正弦定理,可得,因为的周长为5,即,所以,又因为,即,所以.【点睛】本题主要考查了正弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.15、【解析】
根据一元二次不等式的解法直接求解可得结果.【详解】由得:即不等式的解集为故答案为:【点睛】本题考查一元二次不等式的求解问题,属于基础题.16、【解析】
设,,,则,,可得,再根据正弦函数的定义域和值域,求得函数的最值.【详解】解:函数,设,,则,,,,故当,即时,函数,故故答案为:;【点睛】本题主要考查求函数的值域,正弦函数的定义域和值域,体现了转化的数学思想,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2)或【解析】
(1)圆心到切线的距离等于圆的半径,从而易得圆标准方程;(2)考虑直线斜率不存在时是否符合题意,在斜率存在时,设直线方程为,根据垂径定理由弦长得出圆心到直线的距离,现由点(圆心)到直线的距离公式可求得.【详解】(1)由于圆A与直线相切,∴,∴圆A的方程为.(2)①当直线与x轴垂直时,易知与题意相符,使.②当直线与x轴不垂直时,设直线的方程为即,连接,则,∵,∴,由,得.∴直线,故直线的方程为或.【点睛】本题考查直线与圆的位置关系,解题关键是垂径定理的应用,在圆中与弦长有关的问题通常都是用垂径定理解决.18、(1)中位数为:,平均数为:;(2)用平均数描述这个数据更合适.【解析】
(1)根据中位数和平均数的定义计算即可;(2)根据平均数和平均数的优缺点进行选择即可.【详解】(1)将数据从小到大排列得:111,123,123,123,150,160,164,175,190,210,236,250,280,320,430,430.所以中位数为:,平均数为:;(2)用平均数描述这个数据更合适,理由如下:平均数反映的是总体的一个情况,中位数只是数列从小到大排列得到的最中间的一个数或两个数,所以平均数更能反映总体的一个整体情况.【点睛】本题考查数据的数字特征的计算及应用,考查基础知识和基本技能,属于常考题.19、【解析】
利用公式,计算的通项公式,再验证时的情况.【详解】当时,;当时,不满足上式.∴【点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论