2017年人教版六年级数学下册教案设计_第1页
2017年人教版六年级数学下册教案设计_第2页
2017年人教版六年级数学下册教案设计_第3页
2017年人教版六年级数学下册教案设计_第4页
2017年人教版六年级数学下册教案设计_第5页
已阅读5页,还剩107页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版六年级数学下册全册教案

《负数的认识》教学设计

一、教学目标

(一)知识与技能

让学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知

道0既不是正数也不是负数。

(二)过程与方法

结合现实情境理解负数的具体含义,学会用正数、负数表示生活中相反意义的量。

(三)情感态度和价值观

让学生了解负数产生的历史,感受正数、负数与生活的联系,结合史料进行爱国

主义教育。

四、教学过程

(-)谈话激趣,导入新课

1.同学们,你们在生活中见过负数吗?你知道它的含义吗?

2.究竟什么是负数?它表示的含义有什么不同呢?今天我们这节课一起认识负

【设计意图】开门见山直入主题,在谈话中了解学生的认知基础,激活学生的生

活经验。

(二)结合情境,理解意义

1.初步感知负数

(1)课件出示教材第2页例1。

下面是中央气象台2012年1月21日下午发布的六个城市的气温预报(2012

年1月21日20时一2012年1月22日20时)。

教师:请仔细观察,说说你有什么发现?

预设:①哈尔滨的最高气'温是零下19℃,最低气温是零下27℃;海口最热,

最高气温是23c……②-12C表示零下十二摄氏度(读作负十二摄氏度);零下

温度在数字前加……

(2)-3℃和3c表示的意思一样吗?请在温度计中表示出来。

预设:①-3C表示零下三度,3c表示零上三度;②它们表示的意义相反;

③先找0C,往下数三格表示-3C,往上数三格表示3℃。

(3)0℃表示什么意思?

1

预设:①o°c表示天气很冷;②0℃表示淡水开始结冰的温度;③0℃是零上

温度和零下温度的分界线。

小结:比低的温度叫零下温度,通常在数字前加(负号)。比0℃

高的温度叫零上温度,在数字前加“+”(正号),一般情况下正号可省略不写。

(4)请在温度计上表示T8C,比一比-3C和-18c哪个温度低?

【设计意图】利用学生熟悉的气温引入负数,初步了解负数的读写方法,体

会。的特殊性,并通过提问“-3℃和3℃表示的意思一样吗?”引导学生初步感

知用正数、负数表示两种相反意义的量。

2.认识正负数

(1)课件出示教材第3页例2。

教师:研究完气温,再来看看存折上的数。你们又有什么发现呢?说说这些

数各表示什么?

预设:①2000.00表示存入2000元;②500.00和-500.00的意义恰好相反,

一个是存入500元,一个是支出500元。

(2)教师:像零上温度与零下温度、收入与支出这样表示两种相反意义的

量,生活中还有许多。你能举出这样的实例吗?

预设:水面上升2米、下降2米;乘车时上客5人、下客6人;货物运进200

吨、运出150吨...

(3)我们怎样来表示像这样两种相反意义的量呢?

教师:为了表示峥中相反意义的量,需要用两种数。一种是我们以前学过的

数,如3、500、4.7、耳,这噂是正数;另一种是在这些数的前面添上负号“-”

的数,如-3、-500、-4.7、等,这些数是负数。那么0是什么数呢?(0既

不是正数,也不是负数,它是正数与负数的分界线。)

(4)基本练习(课件出示教材第4页“做一做”第2题)

(5)请学生独立思考,哪些是正数,哪些是负数,并填入相应的圈中。

41

-72.5+-r0-5.2--+41

D0

【设计意图】在具体生活实例中让学生体会负数产生的必要性,认识H数、

负数,初步建立正数、负数的概念。同时在出示的负数中有-7、-5.2、-3,让

学生感知负数中有负整数、负分数和负小数。

2

(三)回归生活,拓展应用

教师:在日常生活中,人们还有好多时候要用到正数、负数,让我们一起接

着看一看!

1.课件出示教材第6页练习一第1题。

I.月球表面白天的平均温熙零上126C,记作一C.

施的平均温度为零下150C,记作一C;

(1)学生独立完成,集体反馈。

(2)看了这些信息,你有什么感受?月球表面白天的平均温度和夜间的平

均温度相差多少度?

(1)仔细读题,你获得了什么信息?有什么不明白的?(介绍:海平面就是海

的平均高度;海拔是地面某个地点高出海平面的垂直距离。)

(2)独立完成,集体反馈。

(3)你知道你所在城市的海拔高度吗?说说它的具体含义。

3.课件出示教材第6页练习一第2题。

(1)仔细读题,说说你知道了什么信息?

(2)请表示出悉尼、伦敦的时间。北京时间用什么表示?

(3)以北京时间为标准,孟加拉国首都达卡的时间记为-2时,你知道它此时的

时间吗?

(4)你还知道此时其他时区的时间吗?试着表示出来。

(四)了解历史,课堂总结

《直线上的负数》教学设计

一、教学目标

(-)知识与技能

经历在直线上表示行走距离和方向的过程,体会直线上正负数的排列规律,

逐步建构数的比较完整的认知结构。

(­)过程与方法

在活动中探究直线上表示正负数的方法,学会用正负数表示相反意义的量解

决实际问题,渗透数形结合的思想。

(三)情感态度和价值观

引导学生用数学的眼光关注生活中的问题,感受数学学习的价值。

二、教学重难点

教学重点:学会在直线上表示正负数,体会直线上正负数的排列规律。

教学难点:用正负数表示相反意义的量解决实际问题。

三、教学过程

(-)复习旧知,引入新课

填一填。

①一辆公共汽车经过某站台时有12人上车,记作()人;7人下车,

记作()人。

②阳光小学今年招收新生300人,记作+300人,那么-420人表示

()O

③升降机上升3.5米,记作+3.5米;-4米表示

()O

(1)独立完成,集体反馈。

(2)像这样表示两种相反意义的量可以用正负数表示,你还能举出这样的

例子吗?

【设计意图】回顾复习正负数的意义,为新知学习做好铺垫。

(二)创新情境,探究新知

1.认识直线上的负数

(1)课件出示教材第5页例3。

I:图中的四个同学以大树为起点.分别向东、西两个机反的方向走

如何在♦条直线I:去示它力行走的跑岗和方向呢?

说说你知道了什么信息?

(2)如何在直线上表示他们的行走的距离和方向呢?你准备怎么画?

预设:①以大树为起点,向东为正,向西为负;②0表示起点,向东走2米,

表示为+2米,向西走2米,表示为-2米。

(3)独立画图,交流反馈。

①你是怎么画的?

②比较大家的画法有什么不同?(单位长度不一样。)

4

③直线上其他几个点代表什么数?

【设计意图】让学生在实践活动中自主探索在直线上表示行走距离和方向的方

法,初步认识直线上的负数,培养独立思考习惯与实践操作力。

2.感知直线上数的变化

(1)在直线上表示负数

①请学生独立在直线上表示出1.5和一1.5o

②集体交流:说说你是如何表示的?

预设:①T.5m表示向西走1.5m;②T.5在T和-2之间。

(2)如果你想从起点分别到1.5和-1.5处,应该如何运动?

(3)观察1.5和-1.5的位置,你发现了什么?

预设:①1.5在0的右面1.5个单位长度,T.5在0的左面1.5个单位长度,它

们表示的意义相反;②它们到0的距离相等,都是L5个单位长度;③它们之间

相距3个单位长度。

【设计意图】通过1.5和-1.5的对比,明确在直线上表示正负数的方法,并引

导学生发现两个数离起点的距离相等,只不过分别在0的左右两侧,透+1.5和

—L5的绝对值是相等的。

(4)同桌合作游戏:你走我说。

举例:如果小明从“一2”的位置要走到“一4”,应该如何运动?

(5)引导观察:在直线上从0往右依次是什么数?从0往左呢?你发现了什么

规律?

预设:①0右边的数是正数;②0左边的数是负数;③从左往右的数逐渐增大;

④正数比。大,负数比0小。

【设计意图】在游戏中进一步加深对直线的认识,体会直线上正负数的排列规律,

渗透负数的加减法的认识,为以后学习做铺垫。

(三)巩固深化,拓展应用

1.基本练习

①独立完成,集体交流。

说说怎样在整上表示这些数?

②从起点到-5如何运动?哪个点与它到0的距离相等?它们之间相距几个单位

长度?_

【设计意图】通过在直线上表示-5、-0.5这样的负分数、负小数,引导学生认

识到任何一个数都可以用直线上的一个点来表示,让学生对用数轴上的点表示正

负数形成相对完整的认识。

①独立完成,集体反馈。

5

②如果一个人从“-2”位置出发向西走1米,将会到达什么位置?如果从“-2”

出发先向西走1米,再向东走4米,将会到达什么位置?

③同桌合作游戏:你说我走。

游戏规则:一个人说明起点的位置和如何运动,另一个人用笔尖表示人在数轴上

运动,标出最后到达的位置,并用一个数表示这个位置。

①说说你知道了什么信息?

②独立完成,集体反馈。

①你知道这六名同学的实际成绩分别是多少吗?

②独立计算,集体反馈。

预设:方法一:(84+90方法80+87+76)4-6=82(分);方法二:80+(4+10+7-5-4)

4-6=82(分)。

【设计意图】结合现实情境让学生学会用正负数表示相反意义的量解决实际问

题,体会负数的现实意义,引导学生用数学的眼光关注生活中的问题,感受数学

学习的价值。

(四)课堂总结

说说这节课你有什么收获?

《折扣与成数》教学设计

一、教学目标

(-)知识与技能

1.理解“折扣”“成数”的含义,知道它们在生活中的简单应用。

2.在理解“折扣"''成数”含义的基础上,能自主解决与此相关的实际问题,

培养学生运用知识解决实际问题的能力。

(-)过程与方法

利用生活情境重现结合所学数学知识,发挥学生学习的主动性;同时通过引

导对比及学生的自主探索,发现知识之间的联系。

(三)情感态度和价值观

通过教学,使学生感受到数学与实际生活的联系,培养学生数学的应用意识。

在自主探索的过程中,感受数学学习的乐趣。

四、教学过程

(-)创设情境,引入新课

6

1.同学们去商场购物的时候遇到过商家做促销活动吗?一般他们会采用哪些促

销手段?

2.刚才同学们都提到了“打折”这种情况,没错,像这样降价出售一些商品,

引发人们的购买欲望,是商家常用的促销手段之一。今天这节课,我们就先来了

解有关于“折扣”这件事(板书课题——折扣)。

【设计意图】从学生的生活经验入手,引导学生进行知识的迁移,为学生自

主探索理解打下基础,也让学生体会到数学与生活的联系。

(~)结合情境,学习新知

1.理解“折扣”

这里的九折、八五折是什么意思?

(2)同桌互相说一说。

(3)反馈:

预设:①举例说明:一件衣服100元,八五折的话就只要85元。

②九折就是现价是原价的90%o

(4)归纳:商品打几折,其实就是指现价是原价的百分之几。

(5)练习:看折扣写出相应的百分数。

()%()

%()%

2.解决与“折扣”相关的问题

(1)课件出示教材第8页例1第(1)小题:爸爸给小雨买了一辆自行车,

原价180元,现在商店打八五折出售。买这辆车用了多少钱?

①独立完成并进行校对。

②反馈:谁能来说说自己是怎么想的,为什么这样计算?

重点分析以下问题:

问题一:八五折是什么意思?是把谁看作单位“1”?

问题二:求“买这辆车用了多少钱”也就是在求什么?(180的85%是多少)

(2)课件出示教材第8页例1第(2)小题:爸爸买了一个随身听,原价160

元,现在只花了九折的钱,比原价便宜了多少钱?

①独立思考并完成,同桌交流解题思路。

②交流反馈:

7

重点对比两种解题方式:

第一种算法:原价160减去现价(即原价的90%):160-160X90%。

第二种算法:现价是原价的90%,也就是现价比原价便宜了(1-90%),160

X(1-90%)就是便宜的价钱。

想想哪种方法计算起来比较简便。

(3)练习教材第8页“做一做”,完成后校对。

算出下面各物品打折后出售的价钱(单位:元)。

六五折1D%号1七折q八八折

O

现价:______现价:_______现价:_______

(4)小结:通过刚才的问题解决,你发现原价、现价、折扣之间有什么关系吗?

现价=原价X折扣。

【设计意图】引导学生运用折扣的意义解决生活中的问题。让学生充分掌握学习

的自主权,认真去分析、思考,并在理解的基础上展示不同的解题方法,实现问

题解决的多样化,并进行方法优化的引领。

3.理解“成数”

生活中的百分数还有很多,比如说“成数”。(板书课题——成数)

(1)学生自学教材,明确成数的含义。

(2)反馈:说说什么是成数,可请学生举例说明。

(3)练习:将下列成数改写成百分数。

二成=()%;四成五=

()%;七成二=()%o

【设计意图】有了折扣理解的基础,虽然学生在生活中对成数接触较少,但教师

完全可以放手让学生去自学理解,并通过反馈对学生的自学情况进行了解,对培

养学生的自学能力很有帮助。

4.解决与“成数”相关的问题

(1)课件出示教材第9页例2:某工厂去年用电350万千瓦时,今年比去年节

电二成五,今年用电多少万千瓦时?

①学生读题,独立解答问题。

②交流说说解题思路。

思路一:今年比去年节电二成五,也就是今年比去年少25%,今年用电是去年的

(1-25%),即350X(1-25%)。

8

思路二:去年用电数减去今年节约的度数,即350—350X25%。

教师小结:可以根据自己的理解和计算能力,选择合适的方法进行计算。

5.小结

(1)结合例1及例2说说我们是怎么解决有关“折扣”和“成数”的问题的?

(2)教师小结:在解答这类应用题时,关键是理解“折扣”及“成数”的含义,

把“折扣”或“成数”化成百分数,再按解百分数应用题的方法解答。

【设计意图】引导学生通过对比、探讨,参与解题方法的总结,对于发展学生数

学思维、数学语言表达很有帮助。

(三)应用练习,巩固认知

今天我们学习的知识可以帮助我们解决生活中的一些问题,现在请你来算一

算,做一做。

1.课件出示教材第13页练习二第1题。

(I)打完折后,每种面包各多少元?

(2)晚8:00以后.玲玲拿r3元钱去买面包,她可以怎样买?

(1)独立完成,集体校对。

(2)引导学生按一定的顺序进行思考。

2.课件出示教材第13页练习二第3题。

书店的图书凭优惠卡可打八折,小明用优惠卡买了一套书,省了9.6元。这

套书原价多少钱?

(1)请学生读题思考:9.6元表示的实际含义是什么,和八折有什么关系?

引导明确:9.6元就是打折后比原价减少的钱数,它相当于原价的(1-80%)o

(2)尝试练习,集体校对。

3.课件出示教材第13页练习二第4题。

某县前年秋粮产量为2.8万吨,去年比前年增产三成。去年秋粮产量是多少

万吨?

4.课件出示教材第13页练习二第5题。

9

某汽车出口公司二月份出口汽车1.3万辆,比上月增长3成。一月份出口汽

车多少万辆?

(1)读题,找出关键句,想想两道题目中增长的3成,分别是谁的3成?

也就是把谁看作单位“1”?应该怎样进行计算?

(2)独立完成,集体校对。

【设计意图】练习的设置和安排有层次性和针对性,教师对于练习的辅导也

相应有层次性,简单的题由学生自行梳理、分析、解答,易错题和难题进行针对

性点拨,对于学生对数学的学习应用也大有益处。

(四)回顾梳理,课堂总结

《税率与利率》教学设计

一、教学目标

(一)知识与技能

1.了解“纳税”及“税率”的含义,并能进行有关应纳税额的计算。

2.了解一些有关利率的初步知识,知道本金、利息和利率的公式,会利用利息

的计算公式进行一些简单的计算。

(-)过程与方法通过自主探索学习,体会到知识之间是相互联系的。

(三)情感态度和价值观

1.通过对纳税及储蓄的认识,体会依法纳税的光荣和储蓄对国家和社会的作用,

理解储蓄的意义。

2.认识到百分数在生活中的广泛应用,体会到数学与生活的密切联系。

二、教学过程

(~)创设情境,引入新课

1.(课件出示教材第10页主题图)同学们,我们的祖国正在蓬勃发展中,为了

让祖国更强大,人民生活更美好,国家投入了大量的人力、物力来进行建设,你

知道这些钱是哪来的呢?

2.谁能来说说什么叫纳税?为什么要纳税?

【设计意图】通过图片展示,课前信息的收集和交流,使学生明白依法纳税的意

义和重要性。

(二)结合情境,学习新知

1.理解“税率”的含义。

10

(I)自学教材第10页,进一步明确纳税的意义。

(2)反馈:根据自己的理解说说什么是纳税?什么是应纳税额?什么是税率?

(3)介绍自己所了解的纳税项目并进行简单介绍。

2.结合实例,进一步理解概念,并解决问题。

①读题,说说“营业额的51r是什么意思?这里的5%就是指的(税率)。

②学生独立完成。

③集体交流反馈,知道在这种情况下有如下关系成立:

营业额X税率=营业税。

(2)练习:出示教材第10页“做一做”。

李阿姨的月工资是5000元,扣除3500元个税免征额后的部分需要按3%的税率

缴纳个人所得税。她应缴个人所得税多少元?

①读题,重点引导理解“扣除3500元个税免征额后的部分需要按3%的税率缴纳

个人所得税”这句话的意思。这里3%的税率是所有月工资的3%吗?教师可以适

当补充有关个人所得税的税法规定。

②学生独立解决问题。

③集体交流反馈,知道在这种情况下有如下关系成立:

(总收入一免征收部分)X税率=个人所得税。

(3)对比两道题,了解税收的算法各不相同,要根据实际情况进行计算。

【设计意图】在了解税率有关信息的基础上,进行问题解决,既可以让学生在实

际情境中对概念有进一步的理解,又可以让学生利用概念的解读顺利地解决问

题,使得问题解决和概念理解相辅相成,从而取得较好的学习效果。

3.理解“利率”的含义。

(1)除了税收,人们把有结余又暂时不急用的收入存在银行里,这也是支持国

家建设的行为。你对储蓄有哪些了解?(学生根据课前了解说一说)

(2)自学教材第11页内容,初步了解本金、利息、利率的意义。

(3)结合实例理解信息。

①(实物投影出示存单的凭证)这里哪个是本金,哪个是利率,得到的利息又是

多少?

②这是2012年7月中国人民银行公布的存款利率,你发现什么?

③小结:存期不同,年利率也不同,银行的利率是国家根据经济发展的需要确定

的。

【设计意图】虽然对于储蓄这件事学生并不陌生,但是他们真正接触的并不

多,在初步了解本金、利息、利率的基础上结合实例进行理解很有必要。

4.学习利息的计算方法

11

到期后,王奶奶一共能取回多少钱?

①到期后王奶奶能取回的钱应该包括哪几部分?我们可以先算出什么?试

着先算一算王奶奶能拿到多少利息。

②反馈交流。

预设1:5000X3%X2=300(元);

预设2:5000X3.75%=187.5(元);

预设3:5000X3.75%X2=375(元)。

③哪种算法是正确的呢?

④想想利息的多少跟哪些因素相关?该如何计算?讨论得出如下关系式:

利息=本金X利率X存期。

⑤小结:存期不同,利率也不相同,我们在计算时要注意存期和年利率的对应。

年利率是指一年的,在算利息时还要考虑存款时间。

【设计意图】让学生通过尝试自行计算利息,探讨利息的计算方法,在反馈中进

行辨析答疑,从而得出利息的正确计算方法,学生对知识的掌握会更巩固。

⑥一共可以拿到多少钱呢?

⑦口答。使学生进一步明确:王奶奶到期拿到的钱应该包括利息和本金两部分

2012年8月,张爷爷把儿子寄来的8000元钱存入银行,存期为5年,年利率为

4.75虬到期支取时,张爷爷可得到多少利息?到期时张爷爷一共能取回多少钱?

①学生独立解答。②交流反馈。

重点对比两种解题方法:

方法一:8000X4.75%X5=1900(元)8000+1900=9900(元)

方法二:8000X(1+4.75%X5)=9900(元)

说说这两种方法在计算上有什么不同,分别是怎样思考的。

(3)教师:我们是如何计算利息的?在计算时要注意什么?

【设计意图】将例题及尝试练习略作调整,使得教学更有层次性,更符合学生的

学习能力。

(三)巩固练习

1.基本练习

(1)李老师为某杂志审稿,得到300元审稿费。为此她需要按照3%的税率缴纳

个人所得税,她应缴纳个人所得税多少元?

(2)小明的爸爸得到一笔3000元的劳务费用。其中800元是免税的,其余

部分要按20强的税率缴税。这笔劳务费用一共要缴税多少元?

①学生独立完成。

②集体交流反馈。

12

③对比两题,看看两种交税方式有什么不同,想想计算时要注意什么。

下面是张叔叔2012年8月1日到银行存款时填写的存款凭证。到期时张叔叔可

以取回多少钱?

①要知道到期时张叔叔可以取回多少钱,得知道什么?(根据回答出示银行

存款利率表)

②存期半年,在计算时要注意什么?

③集体交流反馈。

2.实际运用

在过年的时候你收到过压岁钱吗?如果把这些压岁钱存起来,你打算怎么

存,到时会得到多少利息?你准备怎么使用?

【设计意图】数学来源于生活,服务于生活,用生活中的实例设计练习,一

方面可以激发学生的学习兴趣,另一方面也让学生认识到百分数在生活中的广泛

应用,进一步把握用百分数解决实际问题的方法。

(四)课堂总结,课外拓展

《选择购物方案》教学设计

一、教学目标

(-)知识与技能

1.能根据提供的信息,综合应用所学的知识解决生活中的实际问题,巩固有关

百分数、折扣、纳税、利率等知识。

2.能根据计算结果对方案进行合理选择。

(-)过程与方法

通过自行探索、分析、对比,选择合理可行的方案;经历解决问题的过程,体验

自主探究的学习方法。

(三)情感态度和价值观

13

体会数学在生活中的现实意义,感受数学在生活应用中的价值,培养学生的

应用意识。

三、教学过程

(一)创设情境,引入新课

1.每当过节放假,商场里总是有形形色色的促销活动,说说你都碰到过哪

些促销活动?

2.有时,同一品牌在两个商场活动不同,需要我们通过对比选择其中更为

划算的。红红妈妈就碰到了这样的情况,让我们一起来看看怎么选择更合理。

【设计意图】对于商场的促销,学生并不陌生,从生活问题引入新课,让学

生知道今天的学习内容就在身边,具有现实的价值,从而激发学习的兴趣。

(-)展开情境,综合应用

1.教学教材第12页例5。

课件出示题目:某品牌的裙子搞促销活动,在A商场打五折销售,在B商场

按“满100元减50元”的方式销售。妈妈要买一条标价230元的这种品牌的裙

子。(1)在A、B两个商场买,各应付多少钱?(2)选择哪个商场更省钱?

①读题。说说这两个商场的活动各是什么?并说说自己对这两个活动的理

解。重点理解B商场“满100元减50元”的意思。

②析题:想想按两个商场的活动,在A、B两个商场买各付多少钱,该怎么

计算。

③解题:独立完成。

④交流与反馈:集体订正,并得出结论。

⑤回顾思考:这两个促销方式,在什么情况下付的钱是一样的?如果妈妈还

想在这个品牌里买一件上衣,你推荐她在哪里买?为什么?

【设计意图】本节课是在之前百分数的应用上进行的,在分析解答时要有一

定的侧重。像该例题教学,学生明确“满100元减50元”的含义后,完全可以

放手让学生自行去完成。而在此基础上增加的思考环节,则是对百分数意义的进

一步理解和巩固,可以根据班级的实际情况进行取舍。

2.尝试练习教材第12页“做一做”。

(三)巩固练习

1.基础练习

爸爸想在网上书店买书,A店打七折销售,B店满69元减19元。如果爸爸想买

的书标价为80元。(1)在A、B两个书店买,各应付多少元?(2)在哪个书店

买更省钱?能省多少钱?

①学生独立完成。②集体订正。2.提升练习

14

③解题:根据分析独立完成。

④反馈:集体订正,对错题进行分析,得出正确结论。

《圆柱的认识》教学设计

一、教学目标

(-)知识与技能

使学生认识圆柱的底面、侧面和高,掌握圆柱的基本特征。

(-)过程与方法

1.让学生经历探索圆柱基本特征的过程,提高学生观察、操作、分析和概括的

能力。

2.通过学生自主研究,使学生掌握研究立体几何的一般方法,提高学生学习数

学的积极性。

(三)情感态度和价值观

进一步培养学生主动探索精神,发展学生的空间观念,提高学生的学习兴趣。

二、教学重难点

教学重点:掌握圆柱的基本特征。

教学难点:高的认识。

三、教学准备

学生:每生自带一个圆柱形物体,草稿纸。

四、教学过程

(一)复习旧知,引出课题

1.课件出示长方体、正方体:这是我们已经研究过的立体图形,谁还记得

长方体和正方体有哪些特征?我们是怎样研究的?

教师:(出示长方体的模型),我们在认识长方体时主要认识了它的哪些方

面?是怎样研究的?

学生1:长方体的组成,就是长方体有6个面,12条棱和8个顶点。

观察:数一数。(根据学生回答板书研究方法)

学生2:相对的面的面积相等,相对的棱的长度相等。

动手操作:画、剪、比、量。

教师:我们在认识一种几何图形时,可以用这些方式研究一种新的立体图形。

15

【设计意图】用长方体、正方体的学习方法来研究圆柱体,体现了研究方法

的一致性,有利于学生学习能力的提高,为接下来的小组合作学习提供方法上的

指引。

2.在我们的生活中,还有很多物体的形状设计不是长方体和正方体的,你

们看(课件出示):

这些物体的形状有什么共同的特点?

如果把这些物体的形状画下来会是什么样子的呢?

课件演示:从实物图抽象出圆柱图形。

Qo

3.小结:上面这些物体的形状都是圆柱体。

揭题:今天我们要一起来研究圆柱。(板书课题)

(二)动手操作,探究圆柱的特征

1观察•个阈柱形的物体.希/它必由哪儿邰分维成的.仃什么特征。

阙柱昆山3个面寓成的。网柱的上、下两个曲叫做展36。阙柱周网的血(上、

下底而除夕卜)叫做侦面网柱的两个底面之间的胪肉叫做高4

16

(3)小组内互相交流:组织整理好汇报的内容(如:有什么发现?是用什么方

法来研究的?)

【设计意图】小组合作学习,明确要求有利于学生有序地开展研究活动,在互相

合作、互相补充中培养小组协作精神。

2.小组汇报:

(1)结合实物,初步探索圆柱的组成。

哪一组同学来给大家说说看,圆柱有哪些特征?你们是怎么验证的?(学生汇报,

教师相机质疑)

学生:我们知道了圆柱有3个面组成。上下两个圆叫做底面,圆柱周围的面

叫做侧面。(课件出示圆柱和相应的名称)

教师:指一指手中圆柱的底面、侧面。(板书:2个底面,1个侧面)圆柱

的这些面有什么特征呢?

(2)观察、比较圆柱底面的特征。

学生:圆柱的两个底面都是圆,大小相等。(板书:面积相等)

教师:你是怎样知道两个底面相等的?

预设:剪出来比较、量直径计算、画在纸上倒过来观察是否重合。(分别请学生

演示验证)用哪种方法验证最简单?

(3)感知圆柱侧面的特征。

教师:圆柱周围的面有什么特征?与底面有什么不同?(板书:曲面)再用手摸

一摸。

【设计意图】动手操作有利于增强学生直观感知,让学生更好地理解圆柱的特征,

通过多种方法的展示验证拓宽学生思维。

(4)圆柱的高。

课件显示:一个圆柱高度变化过程。

请同学观察:圆柱的什么发生了变化?

引导:哪段距离表示圆柱的高?请看屏幕,圆柱两个底面之间的距离,就叫

圆柱的高。

(课件出示:圆柱两个底面之间的距离叫做高)

教师:圆柱的高在哪些地方可以找到?

根据学生的回答,课件上显示并用有颜色的线闪烁。

小结并板书:圆柱的高有无数条,高的长度都相等。

教师:你能在你的圆柱上指出这条高吗?(圆柱中心的高,指不到)

面对无数条的高,测量哪一条最为简便?(为了方便一般测量侧面上的高)

教师:请看这样画一条线段是它的高吗?(三角板斜放)

17

预设:高是两个底面之间的距离,应该垂直于两个底面。

在我们的生活中,圆柱的高还有其他的说法。

(5)小结圆柱特征。

教师:现在谁来完整的说说圆柱有什么特征(看板书)?

(三)练习巩固

1.教材P18做一做第1题。

指出下面圆柱的底面、侧面和高。

根据学生回答,课件出示相应名称。

2.教材P20练习三第1题:

下面的图形哪些是圆柱?在下面的()里画“3”。

()()()()

学生独立完成,全班校对答案,不是圆柱的说说理由。

【设计意图】通过练习,帮助学生进一步明确圆柱各部分的名称和特征,巩

固所学的知识。

(四)游戏拓展,感受平面图形与立体图形的转换

1.出示一个硬纸板做成的长方形(长10cm,宽5cm),用长尾夹将其10cm

的长固定在小木棒上。

教师:这个简易的玩具跟我们今天所学的圆柱有什么关系呢?我们可以快速

地转动木棒,看看会发生什么奇迹?

学生:转动起来是一个圆柱。

教师:是怎样的一个圆柱?你能用具体数据来描述一下吗?(底面半径为5

cm,高为10cm的一个圆柱)

2.如果我把这个长方形5cm长的那一边夹住后再转,转出来的圆柱跟刚才

的一样吗?

想象一下:这又是一个怎样的圆柱?(一边说一边用手势表示)

出现的圆柱和你想象的大小一样吗?和我们生活中常见的什么物体大小差

不多?

18

3.同一个长方形,为什么转出来的圆柱不同?

如果有一个长方形长是150厘米,宽是30厘米,快速旋转,会形成一个多

大的圆柱?学生回答,课件出示:油桶。

4.考考你:教材P18做一做第2题。

转动长方形A8CO.牛.成右面的两个圆柱。说说它们分别是以长方形的哪

条边为轴旋转而成的?底面半径和高分别是多少?

□(2)

【设计意图】使学生从旋转的角度认识圆柱,即长方形的一条边快速旋转,

形成圆柱形状,感受平面图形与立体图形的转换。通过想象、用手势比划大小、

联系实际生活中的物品,最后看圆柱辨长方形,层层递进,发展学生的空间观念。

(五)课堂总结

这节课你有什么新的收获和感想?

板书设计:

观察:数一数2个底面面积相等

动手操作:画、剪、比,量1个侧面曲面

无数条高长度相等

圆柱的表面积

学目标:1.使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表

面积的计算方法.

2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

3.让学生进一步增强数学在生活中的体验,培养热爱数学、学好学生的兴趣。

教具准备:

圆柱形的物体,圆柱侧面的展开图

教学重点:

理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.

教学难点:

根据实际情况来计算圆柱的表面积。

19

教学过程:

一、复习

下面()图形旋转会形成圆柱。

二、认识侧面积的意义和计算方法。

1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。

问:你能想办法算出这张商标纸的面积吗?

⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。

⑵交流:你们是怎么算的?

沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。

⑶讨论:商标纸的面积就是圆柱中哪个面的面积?

观察一下,展开后的长方形商标纸的长与宽,与圆柱中的什么有关?有什么关

系?

使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。

2、出示例1中的罐头。

⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的

面积吗?测量什么数据较方便?

⑵出示数据:底面直径11厘米高:15厘米

⑶学生算出商标纸的面积。

⑷交流:你是怎么算的?先算什么?再算什么?

3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。

追问:怎么算圆柱的侧面积?

圆柱的侧面积=底面周长X高

长方形的面积=长X宽.

4.发散提高:想一想,生活中还有哪些情况是求圆柱的侧面积?

5.独立完成“练一练”第1题

三、认识表面积的意义和计算方法。

1、出示例3中的圆柱。

⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘

米?

⑵让学生算一算后交流。师板书:

长:3.14X2=6.28(厘米)宽:2厘米

⑶圆柱的两个底面的直径和半径分别是多少厘米?

板书:直径2厘米半径1厘米

2、引导画出圆柱的展开图。

20

⑴这个圆柱有几个面?分别是什么?

⑵如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大?

⑶在书上方格纸上画出这个圆柱的展开图。

⑷交流:你是怎么画的?

3、认识圆柱的表面积。

⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积?

板书:圆柱的表面积=底面圆的面积X2+圆柱侧面积

⑵算出这个圆柱的表面积。算后交流,提醒学生分步计算。

4、练习:完成“练一练”第2题。

⑴各自练习,并指名板演。

⑵对照板演,讨论:

这两题有什么不一样?知道底面圆的直径怎么求圆柱的底面积和圆柱的侧

面积?知道圆的半径呢?

想一想:如果知道的是圆的周长呢?

四.总结反思

1.今天这节课你学到了哪些知识?有什么收获?还有哪些不清楚的问题?

2.生活中的圆柱体表面都是一个侧面加两个底面吗?哪些不是?又该怎样

计算它们的表面积呢?

畅谈体会。

五、巩固应用

1.完成练习六第1题。

注意指导学生思考问题要求的是圆柱的哪个面。

2.完成练习六第2题。

先让学生说说用铁皮做油桶时,需要做圆柱的哪几个面?

圆柱的侧面积二长方形的面积二长X

底面周长

教学反思:

21

圆柱的体积(1)

教学内容

人教版义务教育课程标准实验教科书六年级下册P19-20o

教学目标

1、使学生掌握圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。

2、让学生经历观察、操作、讨论等数学活动过程,理解圆柱体积公式的推导过

程,引导学生探讨问题,体验转化和极限的思想。

教学过程

一、创设情境,激疑引入

“水是生命之源!”节约用水是我们每个公民应尽的义务。前两天,老师

家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了

这么多的水。

1、出示装了水的圆柱容器。

(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体

积?

2、创设问题情境。

师:(课件显示)如果要求某些建筑中圆柱形柱子的体积,或是求压路机圆柱形

大前轮的体积,能用同学们想出来的办法吗?

[设计意图:进一步从实际需要提出问题,激发学生从问题中思考寻求一种更

广泛的方法来解决圆柱体积的问题的欲望]

师:今天,就让我们来研究解决任意圆柱体积的方法。(板书课题:圆柱的体

积)

长方体的体积二底面积x高

底面积X

圆柱的体积二底面积X

V=Sh-nr2h

22

圆柱的体积(2)

【教学内容】

圆柱的体积(2)

【教学目标】

能运用圆柱的体积计算公式解决简单的实际问题。

【重点难点】

容积计算和体积计算的异同,体积计算公式的灵活运用。

【复习导入】

口头回答。

教师:前面我们已经学习了圆柱体积的计算公式,有同学能说一说么?指名

学生回答。板书:圆柱的体积=底面积><高丫=$11="「211

【新课讲授】

1.教学例6。

(1)出示例6,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知

道什么?学生:应先知道杯子的容积。

(2)学生尝试完成例6。

①杯子的底面积:

3.14X(8+2)2=3.14X42=3.14X16=50.24(cm2)

②杯子的容积:50.24X10=502.4(cm3)=502.4(mL)

(3)比较一下补充例题和例6有哪些相同的地方和不同的地方?

学生:相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已

给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求

体积。

2.教学补充例题。

(1)出示补充例题:教材第26页“做一做”第1题。

(2)指名学生回答下面问题:①这道题已知什么?求什么?②能不能根据

公式直接计算?③计算结果是什么?学生:计算时既要分析已知条件和问题,还

要注意统一结果单位,方便比较。

(3)教师评讲本题。

【课堂作业】

教材第26页“做一做”第2题,第28页练习五第3、4题。

第3题,其中的0.8m为多余条件,要注意指导学生审题,选择相关的条件

解决问题。

第4题,是已知圆柱的体积和底面积,求圆柱的高,可以让学生列方程解答。

23

答案:“做一做”:

2.3.14X(0.44-2)2X54-0.02=31.4^31(张)

第3题:3.14X(34-2)2X0.5X2=7.065(m3)=7.065(立方米)

第4题:804-16=5(cm)

【课堂小结】

通过这节课的学习,你有什么收获和感受?

【课后作业】

完成练习册中本课时的练习。

圆柱的体积=底面积X高

V=Sh=nr2h

《用圆柱的体积解决问题》教学设计

一、教学目标

(一)知识与技能

用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。

(-)过程与方法

经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初

步建立“转化”的数学思想,体验“等积变形”的转化过程。

(三)情感态度和价值观

通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。

二、教学重难点

教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方

法。

教学难点:转化前后的沟通。

三、教学准备

每组一个矿泉水瓶(课前统一搜集农夫山泉矿泉水瓶,装有适量清水,水高

度分别为6、7、8、9厘米),直尺。

四、教学过程

24

(一)复习旧知,做好铺垫

1.板书:圆柱的体积。

问:圆柱的体积怎么计算?体积和容积有什么区别?

2.揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的实际

问题。(完整板书:用圆柱的体积解决问题。)

【设计意图】通过复习圆柱的体积计算方法以及体积和容积之间的联系和区

别,为学习新知做好知识上的准备。

(~)探索实践,体验转化过程

1.创设情境,提出问题。

每个小组桌子上有一个没有装满水的矿泉水瓶。

教师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一

个数学问题吗?(随机板书)

预设1:瓶子还有多少水?(剩下多少水?)

预设2:喝了多少水?(也就是瓶子的空气部分。)

预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?)

2.你觉得你能轻松解决什么问题?

(1)预设1:瓶子有多少水?(怎么解决?)

学生:瓶子里剩下的水呈圆柱状,只要量出这个圆柱的底面直径和高就能算

出它的体积。

教师:需要用到什么工具?(直尺)你想利用直尺得到哪些数据?(底面直

径、水的高度)

小结:知道了底面直径和水的高度,要解决这个问题的确轻而易举。请你准

备好直尺,或许等会儿有用哦!

(2)预设2:喝了多少水?

学生:喝掉部分的形状是不规则,没有办法计算。

教师:当物体形状不规则时,我们想求出它的体积可以怎么办?

教师相机引导:能否将空气部分变成一个规则的立体图形呢?

学生能说出方法更好,不能说出则引导:我们不妨把瓶子倒过来看看,你发

现了什么?

25

引导学生发现:在瓶子倒置前后,水的体积不变,空气的体积不变,因此,

喝了多少水=倒置后空气部分的体积,倒置后空气部分是一个圆柱,要求出它的

体积需要哪些数据?(倒置后空气的高度)

小结:这个方法不错,我们利用水的流动性成功地将不规则的空气部分转化

成了一个圆柱体,得到所需数据后能求出它的体积。这样一来,第3个问题还难

得到你吗?

(3)怎么求这个矿泉水瓶的容积?引导学生得出:倒置前水的体积+倒置后

空气的体积=瓶子容积。

【设计意图】课本中的例题呈现如下,

个内宣校是8cm的版干里.水的育度47cm.A

把瓶或拧条倒置放干.无小部分足网”形.品度垃

18cm.这个Ulf的容枳足多少?

也U

例题是直接呈现转化方法的,我是想先屏蔽相关数据信息和方法,通过激发

学生解决问题的内在需求,根据自己的生活学习经验来想办法解决,才有了对数

学情境的改编,以期通过转化、观察、对比,让学生发现倒置前后两部分立体图

形之间的相同点,沟通两部分体积之间的内在联系,顺利地把新知转化为旧知,

分散了难点,从而找到解决问题的方法。

3.小组合作,测量计算。

(矿泉水瓶内直径为6cm)

教师:方法找到了,接下来能否正确求出瓶子的容积就看你们的了!

(1)课件出示:

一个内直径是()的瓶子里,水的高度是(),把瓶盖拧紧

倒置放平,无水部分是圆柱形,高度是()。这个瓶子的容积是多少?

(测量时取整厘米数)

(2)四人小组合作:

A.组长安排好分工:

要量出所需数据,其他组员要监督好测量方法与结果是否正确,要按要求把

题目填完整。

B.组内互相说一说:倒置前后哪两部分的体积不变?

矿泉水瓶的容积=()+()o

C.做好以上准备工作后,利用所得数据独立计算,再组内校对结果是否正

确。

26

【设计意图】这一环节让学生大胆动手操作,在实践中不断发现解决问题,

在同伴的交流中拓展自己的思维,让学生在合作中建立协作精神。

4.交流反馈。

教师巡查,选择矿泉水瓶中原有水高度分别6、7、8、9厘米的同学板演。

瓶中水高度为6厘米的:

3.14X(64-2)2X6+3.14X(6-j-2)2X13

=3.14X9X(6+13)

^537(毫升)。

瓶中水高度为7厘米的:

3.14X(64-2)2X7+3.14X(64-2)2X12

=3.14X9X(7+12)

-537(毫升)。

瓶中水高度为8厘米的:

3.14X(6+2TX8+3.14*(6^-2)2Xll

=3.14X9X(8+11)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论