版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省镇江市丹阳工商职业中学高一数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,一个空间几何体的正视图,左视图,俯视图均为全等的等腰直角三角形,如果直角三角形的直角边长都为1,那么这个几何体的体积为(
)
A.
B.
C.
D.1参考答案:A2.若,则与垂直的单位向量的坐标为(
)A.
B.C.
D.(1,1)或(-1,-1)参考答案:B略3.在直角坐标系中,若角的终边经过点,则()A. B. C. D.参考答案:D【分析】根据任意角三角函数的定义,求得的值,再依诱导公式即可求出。【详解】因为角的终边经过点,所以则,,故选D。【点睛】本题主要考查任意角的三角函数的定义,诱导公式的应用。4.若展开式中存在常数项,则的最小值为(
)A.5
B.6
C.7
D.8参考答案:A5.已知,,则
(
)A
B
C
D参考答案:C略6.已知关于某设各的使用年限x(单位:年)和所支出的维修费用y(单位:万元)有如下的统计资料,x23456y2.23.85.56.57.0由上表可得线性回归方程,若规定当维修费用y>12时该设各必须报废,据此模型预报该设各使用年限的最大值为()A.7 B.8 C.9 D.10参考答案:C【考点】线性回归方程.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】求出,代入回归方程求出,令≤12解出x,【解答】解:=(2+3+4+5+6)=4,=(2.2+3.8+5.5+6.5+7)=5.∴5=4+0.08,解得=1.23,∴=1.23x+0.08,令1.23x+0.08≤12解得x≤≈9.7.∴该设备的使用年限最大为9年.故选C.【点评】本题考查了线性回归方程的求解及数值估计,属于基础题.7.若,则的值为
(
)A.6
B.3
C.
D.参考答案:A8.如图,给出的是的值的一个程序框图,判断框内应填入的条件是()A.i<99 B.i≤99 C.i>99 D.i≥99参考答案:B【考点】EF:程序框图.【分析】判断程序框图的功能,找出规律然后推出判断框的条件.【解答】解:由题意得,执行上式的循环结构,第一次循环:S=1,i=3;第二次循环:;第三次循环:;…,第50次循环:,此时终止循环,输出结果,所以判断框中,添加i≤99,故选B.【点评】本题考查程序框图的应用,判断框图的功能是解题的关键.9.已知集合的集合M的个数为(
)
A.3
B.6
C.7
D.
8参考答案:C10.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑,若三棱锥P-ABC为鳖臑,PA⊥平面,三棱锥P-ABC的四个顶点都在球O的球面上,则球O的表面积为()A.17π
B.25π
C.34π
D.50π参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.若a>0,=,则a=
.参考答案:3【考点】指数函数与对数函数的关系.【分析】先解出a的值,然后代入即可.【解答】解:由得,所以故答案为:312.已知A={﹣1,3,m},集合B={3,4},若B∩A=B,则实数m=.参考答案:4【考点】集合关系中的参数取值问题.【专题】探究型.【分析】利用B∩A=B,得到B?A,然后确定m的数值.【解答】解:因为B∩A=B,所以B?A,又A={﹣1,3,m},集合B={3,4},所以必有m=4.故答案为:4.【点评】本题主要考查利用集合关系确定元素参数取值问题,将B∩A=B,转化为B?A是解决本题的关键.13.(坐标系与参数方程选做题)在极坐标系中,O为极点,直线过圆C:的圆心C,且与直线OC垂直,则直线的极坐标方程为
.参考答案:(或略14.设e为自然对数的底数,若函数f(x)=ex(2﹣ex)+(a+2)?|ex﹣1|﹣a2存在三个零点,则实数a的取值范围是.参考答案:(1,2]【考点】根的存在性及根的个数判断.【分析】利用换元法,可得f(m)=﹣m2+(a+2)m+1﹣a2,f(x)有3个零点,根据m=|t|=|ex﹣1|,可得f(m)的一根在(0,1),另一根在[1,+∞),由此,即可求出实数a的取值范围.【解答】解:令t=ex﹣1,ex=t+1,f(t)=1﹣t2+(a+2)|t|﹣a2,令m=|t|=|ex﹣1|,则f(m)=﹣m2+(a+2)m+1﹣a2,∵f(x)有3个零点,∴根据m=|t|=|ex﹣1|,可得f(m)的一根在(0,1),另一根在[1,+∞),∴∴a∈(1,2].故答案为(1,2].【点评】本题考查实数a的取值范围,考查函数的零点,考查方程根的研究,正确转化是关键.15.若f(x)=|log2x|﹣m有两个零点x1,x2(x1>x2),则的最小值为
.参考答案:4【考点】函数零点的判定定理.【分析】由题意可知:求得f(x)的两个零点,则=22m+4()2m=22m+22﹣2m≥2=2=4.【解答】解:由题意可知:f(x)=|log2x|﹣m有两个零点x1,x2(x1>x2),则x1=2m,x2=()m,=22m+4()2m=22m+22×2﹣2m=22m+22﹣2m≥2=2=4,∴的最小值4.故答案为:4.【点评】本题考查函数零点定理的判定,考查含绝对值的函数的零点判断,基本不等式的性质,属于中档题.16.满足条件的集合有__________个.参考答案:3满足条件的集合有:,,,故共有个.17.α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m?α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题是
(填序号)参考答案:②③④【考点】2K:命题的真假判断与应用;LO:空间中直线与直线之间的位置关系;LP:空间中直线与平面之间的位置关系.【分析】根据空间直线与平面的位置关系的判定方法及几何特征,分析判断各个结论的真假,可得答案.【解答】解:①如果m⊥n,m⊥α,n∥β,不能得出α⊥β,故错误;②如果n∥α,则存在直线l?α,使n∥l,由m⊥α,可得m⊥l,那么m⊥n.故正确;③如果α∥β,m?α,那么m与β无公共点,则m∥β.故正确④如果m∥n,α∥β,那么m,n与α所成的角和m,n与β所成的角均相等.故正确;故答案为:②③④三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(2016秋?建邺区校级期中)己知全集U=R,集合A={x|3≤x<7},B={x|2<log2x<4}.(1)求A∪B;(2)求(?UA)∩B.参考答案:【考点】交、并、补集的混合运算;并集及其运算.【专题】集合思想;定义法;集合.【分析】(1)化简求得B,再由并集的运算即可得到;(2)求得A的补集,再求B的交集,即可得到.【解答】解:(1)全集U=R,集合A={x|3≤x<7},B={x|2<log2x<4}={x|4<x<16|,则A∪B={x|3≤x<16};(2)(?UA)∩B={x|x<3或x≥7}∩{x|4<x<16|={x|7≤x<16}.【点评】本题考查集合的运算,主要是交、并和补集的运算,考查运算能力,属于基础题.19.(本小题满分12分)已知集合A=,B={x|2<x<10},全集为实数集R,(1)求A∪B;(2)求(CRA)∩B。参考答案:(1)A∪B=(2)(CRA)∩B=
20.设A={x∈Z||x|≤6},B={1,2,3},C={3,4,5,6},求:(1)A∩(B∩C);(2)A∩CA(B∪C).参考答案:【考点】交、并、补集的混合运算.【分析】通过列举法表示出集合A(1)利用集合的交集的定义求出集合B,C的交集,再求出三个集合的交集.(2)先求出集合B,C的并集,再求出B,C的并集的补集,再求出集合A与之的交集.【解答】解:∵A={﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6}(1)又∵B∩C={3},∴A∩(B∩C)={3};(2)又∵B∪C={1,2,3,4,5,6}得CA(B∪C)={﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0}.∴A∩CA(B∪C)={﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0}21.在等差数列{an}中,Sn为其前n项和(),且,.(1)求数列{an}的通项公式;(2)设,数列{bn}的前n项为Tn,证明:参考答案:(1);(2)见解析【分析】(1)运用等差数列的通项公式和求和公式,解方程组,可得首项和公差,即可得到所求通项;(2)化简,再利用裂项相消求数列的和,化简整理,即可证得.【详解】(1)设等差数列的公差是,由,,得解得,,∴.(2)由(1)知,,∴,,因为,则成立.【点睛】本题考查等差数列的通项公式的求法,也考查了裂项相消求和求数列的和,考查化简整理的运算能力,属于中档题.22.已知圆x2+y2=8内一点M(﹣1,2),AB为过点M且倾斜角为α的弦.(Ⅰ)当时,求AB的长;(Ⅱ)当弦AB被点M平分时,求直线AB的方程.参考答案:【考点】直线与圆的位置关系.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年电商平台用户隐私保护合同
- 2024-2030年青铜粉行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2024-2030年红包应用搬迁改造项目可行性研究报告
- 2024-2030年甲硝唑原料药公司技术改造及扩产项目可行性研究报告
- 2024-2030年版中国有线数字电视增值业务行业动态分析及投资运营模式研究报告
- 2024年建筑工程安全生产责任合同
- 2024年甲乙双方关于无人机研发生产销售合同
- 2024年房地产无抵押担保分期付款合同3篇
- 2024年煤场使用权转让协议
- 教研课程设计工作
- 车间生产中的问题分析与解决方案
- 消化性溃疡.课件
- VR游戏品质评估体系与评价标准
- 2024年北京中考记叙文阅读专题03 小说阅读(含答案解析)
- 宜春古城改造计划书
- 人力资源部副经理个人述职报告
- 小学一年级科学(上册)期末试卷含参考答案
- 机械制造厂质量管理手册
- 2024年四川成都高新科技服务有限公司招聘笔试参考题库含答案解析
- 湖北省随州市曾都区2022-2023学年七年级上学期期末学业质量监测心理健康教育试题(含答案)
- 足部健康宣教课件
评论
0/150
提交评论