版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省泰安市肥城潮泉镇初级中学高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知变量x与y正相关,且由观测数据算得样本平均数,,则由该观测的数据算得的线性回归方程可能是A. B.C. D.参考答案:A试题分析:因为与正相关,排除选项C、D,又因为线性回归方程恒过样本点的中心,故排除选项B;故选A.考点:线性回归直线.2.将函数的图像向左平移个单位,所得图像关于轴对称,则的最小值为(A) (B) (C)
(D)参考答案:A略3.设集合,则A.
B.
C.
D.参考答案:B略4.已知函数f(x)=ax2+(a3﹣a)x+1在(﹣∞,﹣1]上递增,则a的取值范围是()A.a B. C. D.参考答案:D【考点】函数单调性的性质.
【专题】计算题.【分析】函数f(x)=ax2+(a3﹣a)x+1在(﹣∞,﹣1]上递增,由二次函数的图象知此函数一定开口向下,且对称轴在区间的右侧,由此问题解决方法自明.【解答】解:由题意,本题可以转化为解得当a=0时,函数f(x)=1不符合题意综上知,a的取值范围是故选D【点评】本题考点是函数单调性的性质,考查二次函数的性质与图象,本题由二次函数的图象转化为关于参数的不等式即可,由于二次项的系数带着字母,所以一般要对二次系数为0进行讨论,以确定一次函数时是否满足题意,此项漏掉讨论是此类题失分的一个重点,做题时要注意问题解析的完整性,考虑到每一种情况.5.已知a,b,c分别是△ABC中角A,B,C的对边长,b和c是关于x的方程x2﹣9x+25cosA=0的两个根(b>c),且,则△ABC的形状为()A.等腰三角形 B.锐角三角形 C.直角三角形 D.钝角三角形参考答案:C【分析】由已知:(sinB+sinC+sinA)(sinB+sinC﹣sinA)=sinBsinC,利用正弦定理可得b2+c2﹣a2=bc,进而利用余弦定理求cosA,从而可求sinA的值,由方程x2﹣9x+25cosA=0,可得x2﹣9x+20=0,从而b,c,利用余弦定理a2=b2+c2﹣2bccosA=9,可求得a,直接判断三角形的形状即可.【解答】(本题满分为12分)解:由已知:(sinB+sinC+sinA)(sinB+sinC﹣sinA)=sinBsinC,∴sin2B+sin2C﹣sin2A=sinBsinC,由正弦定理:∴b2+c2﹣a2=bc,…由余弦定理cosA==,…∴sinA=,…又∵由(1)方程x2﹣9x+25cosA=0即x2﹣9x+20=0,则b=5,c=4,…∴a2=b2+c2﹣2bccosA=9,∴a=3,…∴b2=c2+a2,三角形是直角三角形…6.满足A=60°,c=1,a=的△ABC的个数记为m,则的值为()高考资源网A.3
B.
C.1
D.不确定w。w-w*k&s%5¥u参考答案:B略7.不等式﹣x2+3x﹣2≥0的解集是()A.{x|x>2或x<1} B.{x|x≥2或x≤1} C.{x|1≤x≤2} D.{x|1<x<2}参考答案:C【考点】一元二次不等式的解法.【分析】不等式﹣x2+3x﹣2≥0化为x2﹣3x+2≤0,因式分解为(x﹣1)(x﹣2)≤0,即可解出.【解答】解:不等式﹣x2+3x﹣2≥0化为x2﹣3x+2≤0,因式分解为(x﹣1)(x﹣2)≤0,解得1≤x≤2.∴原不等式的解集为{x|1≤x≤2},故选:C.8.下列函数中,在R上单调递增的是(
)A.
B.
C.
D.参考答案:C9.(1+tan20°)(1+tan25°)=()A.2 B.1 C.﹣1 D.﹣2参考答案:A【考点】GR:两角和与差的正切函数.【分析】把所给的式子展开,利用两角和的正切公式,化简可得结果.【解答】解:(1+tan20°)(1+tan25°)=1+tan20°+tan25°+tan20°tan25°=1+tan(20°+25°)?(1﹣tan20°?tan25°)+tan20°tan25°=1+1﹣tan20°?tan25°)+tan20°?tan25°=2,故选:A.【点评】本题主要考查两角和的正切公式的变形应用,属于基础题.10.函数f(x)=2sin(ωx+φ)(ω>0)的图象经过A(﹣,﹣2)、B(,2)两点,则ω()A.最大值为3B.最小值为3C.最大值为D.最小值为参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.函数在上恒有||>,则取值范围是________.参考答案:12.已知函数f(x)在定义域(0,+∞)上是单调函数,若对任意x∈(0,+∞),都有,则的值是
.参考答案:6【考点】函数单调性的性质;函数的值.【专题】函数的性质及应用.【分析】由函数f(x)在定义域(0,+∞)上是单调函数,且f(f(x)﹣)=2,知f(x)﹣为一个常数,令这个常数为n,则有f(x)﹣=n,f(n)=2,所以n+=2,解得n=1,由此能求出f()=6.【解答】解:∵函数f(x)在定义域(0,+∞)上是单调函数,且f(f(x)﹣)=2,∴f(x)﹣为一个常数,令这个常数为n,则有f(x)=n+,且f(n)=2.再令x=n可得n+=2,解得n=1,因此f(x)=1+,所以f()=6.故答案为:6.【点评】本题考查利用函数的单调性求函数值,解题时要认真审题,仔细解答,注意合理地进行等价转化,属于中档题.13.在△ABC中,角A,B,C所对的边分别为a,b,c,△ABC的面积为S,若,且,则A=
.参考答案:30°,则又即,
14.命题“?x>0,x2+2x-3>0”的否定是______.参考答案:?x0>0,x02+2x0-3≤0【分析】根据含有量词的命题的否定即可得到结论.【详解】命题为全称命题,则命题“?x>0,x2+2x-3>0”的否定是为?x0>0,x02+2x0-3≤0,故答案为:?x0>0,x02+2x0-3≤0.【点睛】本题主要考查含有量词的命题的否定,比较基础.15.设实数x,y满足,则x﹣2y的最大值等于_________.参考答案:216.已知函数f(x)=()|x﹣1|+a|x+2|.当a=1时,f(x)的单调递减区间为;当a=﹣1时,f(x)的单调递增区间为,f(x)的值域为.参考答案:[1,+∞);[﹣2,1];[,8].【考点】复合函数的单调性.
【专题】综合题;函数的性质及应用.【分析】当a=1时,f(x)=()|x﹣1|+|x+2|,令u(x)=|x﹣1|+|x+2|=,利用复合函数的单调性判断即可;当a=﹣1时,f(x)=()|x﹣1|﹣|x+2|令u(x)=|x﹣1|﹣|x+2|=,根据复合函数的单调性可判断即可.【解答】解:(1)∵f(x)=()|x﹣1|+a|x+2|.∴当a=1时,f(x)=()|x﹣1|+|x+2|,令u(x)=|x﹣1|+|x+2|=,∴u(x)在[1,+∞)单调递增,根据复合函数的单调性可判断:f(x)的单调递减区间为[1,+∞),(2)当a=﹣1时,f(x)=()|x﹣1|﹣|x+2|令u(x)=|x﹣1|﹣|x+2|=,u(x)在[﹣2,1]单调递减,∴根据复合函数的单调性可判断:f(x)的单调递增区间为[﹣2,1],f(x)的值域为[,8].故答案为:[1,+∞);[﹣2,1];[,8].【点评】本题考查了函数的单调性,复合函数的单调性的判断,属于中档题,关键是去绝对值.17.若幂函数y=(m2﹣2m﹣2)x﹣4m﹣2在x∈(0,+∞)上为减函数,则实数m的值是__________.参考答案:3考点:幂函数的概念、解析式、定义域、值域.专题:计算题;函数的性质及应用.分析:根据给出的函数为幂函数,由幂函数概念知m2﹣m﹣1=1,再根据函数在(0,+∞)上为减函数,得到幂指数应该小于0,求得的m值应满足以上两条.解答:解:因为函数y=(m2﹣2m﹣2)x﹣4m﹣2既是幂函数又是(0,+∞)的减函数,所以,?,解得:m=3.故答案为:m=3.点评:本题考查了幂函数的概念及性质,解答此题的关键是掌握幂函数的定义,此题极易把系数理解为不等于0而出错,属基础题三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.直三棱柱中,,,分别为,的中点.(1)求证:;(2)求证:平面.
参考答案:证明:因为是直三棱柱,所以平面,因为平面,所以,因为,,,平面,所以平面,因为平面,所以.
--6分(2)证明:取中点,连接,,因为是的中点,所以,,又因为为中点,,所以,,所以,所以四边形为平行四边形,所以,又因为平面,平面,所以平面.
--12分19.已知点(1,2)是函数f(x)=ax(a>0且a≠1)的图象上一点,数列{an}的前n项和Sn=f(n)-1.(1)求数列{an}的通项公式;(2)若bn=logaan+1,求数列{anbn}的前n项和Tn.参考答案:解:(1)把点(1,2)代入函数f(x)=ax得a=2,∴数列{an}的前n项和为Sn=f(n)-1=2n-1.当n=1时,a1=S1=1;当n≥2时,an=Sn-Sn-1=2n-2n-1=2n-1,对n=1时也适合,∴an=2n-1.(2)由a=2,bn=logaan+1得bn=n,∴anbn=n·2n-1.Tn=1·20+2·21+3·22+…+n·2n-1,①2Tn=1·21+2·22+3·23+…+(n-1)·2n-1+n·2n.②由①-②得:-Tn=20+21+22+…+2n-1-n·2n,所以Tn=(n-1)2n+120.(本小题满分14分)已知如图,斜三棱柱ABC-A1B1C1中,点D、D1分别为AC、A1C1上的点.(1)当等于何值时,BC1∥平面AB1D1?(2)若平面BC1D∥平面AB1D1,求的值.参考答案:解:(1)如图,取D1为线段A1C1的中点,此时=1,连结A1B交AB1于点O,连结OD1.
由棱柱的性质,知四边形A1ABB1为平行四边形,所以点O为A1B的中点.在△A1BC1中,点O、D1分别为A1B、A1C1的中点,∴OD1∥BC1.
…………3分又∵OD1?平面AB1D1,BC1?平面AB1D1,∴BC1∥平面AB1D1.………6分∴=1时,BC1∥平面AB1D1,……..7分(2)由已知,平面BC1D∥平面AB1D1,且平面A1BC1∩平面BDC1=BC1,平面A1BC1∩平面AB1D1=D1O.因此BC1∥D1O,
.........................................................
10分同理AD1∥DC1.....................................................................11分∴=,=....................................................13分又∵=1,∴=1,即=1............................................................14分略21.在平面直角坐标系xOy中,直线截以原点O为圆心的圆所得的弦长为。(1)求圆O的方程;(2)若直线l与圆O切于第一象限,且与坐标轴交于点D,E,当DE长最小时,求直线l的方程;(3)设M,P是圆O上任意两点,点M关于x轴的对称点N,若直线MP,NP分别交x轴于点和,问mn是否为定值?若是,请求出该定值;若不是,请说明理由。参考答案:(1);(2);(3)定值为.试题分析:(1)求出点到直线的距离,进而可求圆的半径,即可得到圆的方程;(2)设直线的方程,利用直线与圆相切,及基本不等式,可求长最小时,直线的方程;(3)设,则,求出直线,分别与轴交点,进而可求的值。试题解析:(1)因为点到直线的距离为,所以圆的半径为,故圆的方程为。(2)设直线的方程为,即,由直线与圆相切,得,即,,当且仅当时取等号,此时直线的方程为,所以当长最小进,直线的方程为。(3)设点,则,直线与轴交点为,则,直线与轴交点为,则,所以,故为定值2。考点:1.直线和圆的方程的应用;2.直线与圆相交的性质。22.为振兴苏区发展,赣州市计划投入专项资金加强红色文化基础设施改造.据调查,改造后预计该市在一个月内(以30天记),红色文化旅游人数f(x)(万人)与日期x(日)的函数关系近似满足:,人均消费g(x)(元)与日期x(日)的函数关系近似满足:g(x)=60﹣|x﹣20|.(1)求该市旅游日收入p(x)(万元)与日期x(1≤x≤30,x∈N*)的函数关系式;(2)当x取何值时,该市旅游日收入p(x)最大.参考答案:【考点】函数模型的选择与应用;分段函数的应用.【专题】函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年远程探视系统项目可行性研究报告
- 2024年自动尿液分析仪项目可行性研究报告
- 酒店厨房承包合同书范文
- 简单修缮房屋合同范本3篇
- 安置房买卖合同范本
- 2024年度汽车零部件生产分包合同3篇
- 2024年度商业秘密保密合同~仅供于参考3篇
- 2024年旋挖钻机项目申请报告
- 2024年高阻尼材料项目提案报告
- 2024年市场推广合同推广策略与执行计划3篇
- 内镜中心核心工作规章规章制度
- 人教版新起点二年级英语上册全册教案
- 第六单元名著导读《西游记》孙悟空的成长之路课件(共43张)统编版语文七年级上册
- 小学数学六年级下册思维导图:图形的运动
- DB32/T 4443-2023 罐区内在役危险化学品(常低压)储罐管理规范
- 5 国家机构有哪些 第一课时(说课稿)部编版道德与法治六年级上册
- 小学儿童心理学全套教学课件
- 工业气体充装站建站项目建设申请建设可研报告
- 医学影像诊断学习题集
- 东莞市数据中心中央空调施工方案
- 道路运输企业两类人员安全考核题库题库(1020道)
评论
0/150
提交评论