黑龙江省伊春市宜春寨下中学高一数学文期末试卷含解析_第1页
黑龙江省伊春市宜春寨下中学高一数学文期末试卷含解析_第2页
黑龙江省伊春市宜春寨下中学高一数学文期末试卷含解析_第3页
黑龙江省伊春市宜春寨下中学高一数学文期末试卷含解析_第4页
黑龙江省伊春市宜春寨下中学高一数学文期末试卷含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省伊春市宜春寨下中学高一数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知非零向量,满足+4=0,则()A.||+4||=0 B.与是相反向量C.与的方向相同 D.与的方向相反参考答案:D【考点】96:平行向量与共线向量.【分析】根据题意,由向量加法的运算性质可得=﹣4,即与的方向相反,且||=4||,由此分析选项,即可得答案.【解答】解:根据题意,非零向量,满足+4=0,即=﹣4,即与的方向相反,且||=4||,依次分析选项:对于A:||=4||,||+4||=5||≠0,故A错误;对于B:与的方向相反,且||=4||,与的不是相反向量,故B错误;对于C:与的方向相反,故C错误;对于D:与的方向相反,D正确;故选:D.2.阅读右侧的算法框图,输出的结果的值为

A.

B.

C.

D.参考答案:A略3.求的值是(

A.89

B.

C.45

D.参考答案:B略4.直线的倾斜角为(

)A.30° B.60° C.120° D.150°参考答案:D【分析】由直线方程求得直线斜率进而可得倾斜角.【详解】由直线,即直线可知斜率为:,所以倾斜角为150°.故选D.【点睛】本题主要考查了直线的斜率和倾斜角,属于基础题.5.是定义在上的偶函数,若则下列各式中一定成立的是(

)A.

B.

C.

D.

参考答案:B6.已知等差数列中,则()A.10 B.16 C.20 D.24参考答案:C分析】根据等差数列性质得到,再计算得到答案.【详解】已知等差数列中,故答案选C【点睛】本题考查了等差数列的性质,是数列的常考题型.7.幂函数,其中,且在(0,+∞)上是减函数,又,则=(

)A.0

B.

1

C.2

D.

3参考答案:B8.在下列四组函数中,表示同一函数的是(

).A.f(x)=,g(x)=1 B.C.

D.f(x)=|x|,g(x)=参考答案:D略9.已知函数有3个零点,则实数a的取值范围是()A.a<1 B.a>0 C.a≥1 D.0<a<1参考答案:D【考点】根的存在性及根的个数判断.【分析】作出函数f(x)的图象,利用函数f(x)有3个零点,建立条件关系即可求出a的取值范围.【解答】解:函数f(x)有3个零点,须满足,即,即0<a<1,故选D.【点评】本题主要考查函数零点的应用,利用数形结合是解决本题的关键.10.在△ABC中,内角A,B,C所对的边分别为a,b,c,且,则cosB=(

)A. B. C. D.1参考答案:C【分析】直接利用余弦定理求解.【详解】由余弦定理得.故选:C【点睛】本题主要考查余弦定理解三角形,意在考查学生对该知识的理解掌握水平,属于基础题.

二、填空题:本大题共7小题,每小题4分,共28分11.由于德国著名数学家狄利克雷对数论、数学分析和物理学的突出贡献,人们将函数命名为狄利克雷函数,已知函数,下列说法中:①函数的定义域和值域都是;②函数是奇函数;③函数是周期函数;④函数在区间上是单调函数.正确结论是

.参考答案:①12.已知数列的前四项为,写出该数列一个可能的通项公式为=

。参考答案:13.函数y=sin2x+2cosx(≤x≤)的最小值为.参考答案:﹣2考点:复合三角函数的单调性.专题:计算题;三角函数的图像与性质.分析:先将y=sin2x+2cosx转化为y=﹣cos2x+2cosx+1,再配方,利用余弦函数的单调性求其最小值.解答:解:∵y=sin2x+2cosx=﹣cos2x+2cosx+1=﹣(cosx﹣1)2+2,∵≤x≤,∴﹣1≤cosx≤,﹣2≤cosx﹣1≤﹣,∴≤(cosx﹣1)2≤4,﹣4≤﹣(cosx﹣1)2≤﹣.∴﹣2≤2﹣(cosx﹣1)2≤.∴函数y=sin2x+2cosx(≤x≤)的最小值为﹣2.故答案为:﹣2.点评:本题考查余弦函数的单调性,考查转化思想与配方法的应用,属于中档题.14.在△ABC中,,动点P在线段AM上,则的最小值为______.参考答案:【分析】先由确定M为BC中点,由平行四边形法则得到,利用计算得出。【详解】点M是BC的中点设,则即当时,的最小值为【点睛】本题考查了向量的数量积运算和向量的平行四边形法则,将转化为是关键。15.设f(x)为奇函数,且在(﹣∞,0)上递减,f(﹣2)=0,则xf(x)<0的解集为.参考答案:(﹣∞,﹣2)∪(2,+∞)【考点】3N:奇偶性与单调性的综合.【分析】易判断f(x)在(﹣∞,0)上的单调性及f(x)图象所过特殊点,作出f(x)的草图,根据图象可解不等式.【解答】解:∵f(x)在R上是奇函数,且f(x)在(﹣∞,0)上递减,∴f(x)在(0,+∞)上递减,由f(﹣2)=0,得f(﹣2)=﹣f(2)=0,即f(2)=0,由f(﹣0)=﹣f(0),得f(0)=0,作出f(x)的草图,如图所示:由图象,得xf(x)<0?或,解得x<﹣2或x>2,∴xf(x)<0的解集为:(﹣∞,﹣2)∪(2,+∞)故答案为:(﹣∞,﹣2)∪(2,+∞)16.不等式(2+1)()0的解集是____________________________.参考答案:17.已知角的终边过点,则___________.参考答案:试题分析:因为,所以有,即角在第四象限,又,所以.考点:三角函数与坐标的关系.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知集合A={x|3≤x<7},B={x|2<x<10},求:A∪B,(?RA)∩B.参考答案:【考点】补集及其运算;并集及其运算;交集及其运算.【分析】根据并集的定义,由集合A={x|3≤x<7},B={x|2<x<10},求出A与B的并集即可;先根据全集R和集合A求出集合A的补集,然后求出A补集与B的交集即可.【解答】解:由集合A={x|3≤x<7},B={x|2<x<10},把两集合表示在数轴上如图所示:得到A∪B={x|2<x<10};根据全集为R,得到CRA={x|x<3或x≥7};则(CRA)∩B={x|2<x<3或7≤x<10}.19.已知函数(1)判断函数f(x)在区间[2,5]上的单调性.(2)求函数f(x)在区间[2,5]上的最大值与最小值.参考答案:【考点】函数单调性的判断与证明;函数单调性的性质.【分析】(1)定义法:设x1,x2∈[2,5]且x1<x2,通过作差比较出f(x1)与f(x2)的大小,根据单调性的定义即可判断其单调性;(2)由(1)知f(x)在[2,5]上的单调性,根据单调性即可求得f(x)在[2,5]上的最值;【解答】解:(1)f(x)在[2,5]上单调递减.设x1,x2∈[2,5]且x1<x2,则==,∵2≤x1<x2≤5,∴x2﹣x1>0,(x1﹣1)(x2﹣1)>0,所以f(x1)﹣f(x2)>0,即f(x1)>f(x2),所以函数在区间[2,5]上为减函数;(2)由(1)知,f(x)在区间[2,5]上单调递减,所以f(x)在[2,5]上的最大值是:,f(x)在区间[2,5]上的最小值是:.20.设函数f(x)的定义域为R,如果存在函数g(x),使得f(x)≥g(x)对于一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.已知函数f(x)=ax2+bx+c的图象经过点(-1,0).(1)若a=1,b=2.写出函数f(x)的一个承托函数(结论不要求证明);(2)判断是否存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f(x)为函数的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.参考答案:(1)g(x)=x

(2)存在,a=c=,b=.【分析】(1)由题意可得c=1,进而得到f(x),可取g(x)=x;(2)假设存在常数a,b,c满足题意,令x=1,可得a+b+c=1,再由二次不等式恒成立问题解法,运用判别式小于等于0,化简整理,即可判断存在.【详解】(1)函数f(x)=ax2+bx+c的图象经过点(-1,0),可得a-b+c=0,又a=1,b=2,则f(x)=x2+2x+1,由新定义可得g(x)=x为函数f(x)的一个承托函数;(2)假设存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f(x)为函数的一个承托函数.即有x≤ax2+bx+c≤x2+恒成立,令x=1可得1≤a+b+c≤1,即为a+b+c=1,即1-b=a+c,又ax2+(b-1)x+c≥0恒成立,可得a>0,且(b-1)2-4ac≤0,即为(a+c)2-4ac≤0,即有a=c;又(a-)x2+bx+c-≤0恒成立,可得a<,且b2-4(a-)(c-)≤0,即有(1-2a)2-4(a-)2≤0恒成立.故存在常数a,b,c,且0<a=c<,b=1-2a,可取a=c=,b=.满足题意.【点睛】本题考查新定义的理解和运用,考查不等式恒成立问题的解法,注意运用赋值法和判别式法,考查运算能力,属于中档题.21.(12分)如图,已知两个正方形ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点

。若平面ABCD⊥平面DCEF,求直线MN与平面DCEF所成角的正值弦参考答案:取CD的中点G,连接MG,NG。设正方形ABCD,DCEF的边长为2,

则MG⊥CD,MG=2,NG=

则MG⊥CD,MG=2,NG=.因为平面ABCD⊥平面DCED,所以MG⊥平面DCEF,可得∠MNG是MN与平面DCEF所成的角。因为MN=,所以sin∠MNG=为MN与平面DCEF所成角的正弦值22.(12分)已知集合A={x|x<﹣1或x>4},B={x|2a≤x≤a+3},若B?A,求实数a的取值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论