版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省榆林市玉林博学中学2022年高一数学文知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,三棱柱中,侧棱底面,底面三角形是正三角形,是中点,则下列叙述正确的是(
)A.与是异面直线
B.平面C.平面D.,为异面直线,且参考答案:D2.若函数,则的单调递增区间是
(
)A.
B.
C.
D.参考答案:A略3.下列函数中与函数有相同图象的一个是(
).A. B. C. D.参考答案:A选项,定义域为,与已知函数定义域相同,且对应关系也相同,所以与有相同图象,故正确;选项,定义域是,与定义域不同,所以与其函数图象不同,故错误;选项,定义域是,与定义域不同,所以函数图象不同,故错误;选项,定义域是,与定义域不同,所以函数图象不同,故错误.综上所述,故选.4.(5分)如图,四棱锥S﹣ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是() A. AC⊥SB B. AB∥平面SCD C. SA与平面SBD所成的角等于SC与平面SBD所成的角 D. AB与SC所成的角等于DC与SA所成的角参考答案:D考点: 直线与平面垂直的性质.专题: 综合题;探究型.分析: 根据SD⊥底面ABCD,底面ABCD为正方形,以及三垂线定理,易证AC⊥SB,根据线面平行的判定定理易证AB∥平面SCD,根据直线与平面所成角的定义,可以找出∠ASO是SA与平面SBD所成的角,∠CSO是SC与平面SBD所成的角,根据三角形全等,证得这两个角相等;异面直线所成的角,利用线线平行即可求得结果.解答: 解:∵SD⊥底面ABCD,底面ABCD为正方形,∴连接BD,则BD⊥AC,根据三垂线定理,可得AC⊥SB,故A正确;∵AB∥CD,AB?平面SCD,CD?平面SCD,∴AB∥平面SCD,故B正确;∵SD⊥底面ABCD,∠ASO是SA与平面SBD所成的角,∠DSO是SC与平面SBD所成的,而△SAO≌△CSO,∴∠ASO=∠CSO,即SA与平面SBD所成的角等于SC与平面SBD所成的角,故C正确;∵AB∥CD,∴AB与SC所成的角是∠SCD,DC与SA所成的角是∠SAB,而这两个角显然不相等,故D不正确;故选D.点评: 此题是个中档题.考查线面垂直的性质定理和线面平行的判定定理,以及直线与平面所成的角,异面直线所成的角等问题,综合性强.5.在△ABC中,若,则B=(
)A.30° B.60° C.120° D.150°参考答案:C【分析】运用正弦定理结合题意得到三边的数量关系,再运用余弦定理求出结果【详解】因为,所以.设,则,,由余弦定理可得,故.故选C6.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。则完成(1)、(2)这两项调查宜采用的抽样方法依次是(
)A.分层抽样法,系统抽样法
B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法
D.简单随机抽样法,分层抽样法参考答案:B7.在正四面体P﹣ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中不成立的是()A.BC∥平面PDF B.DF⊥平面PAEC.平面PDF⊥平面ABC D.平面PAE⊥平面ABC参考答案:C【考点】平面与平面垂直的判定;直线与平面平行的判定;直线与平面垂直的判定.【专题】计算题;压轴题.【分析】正四面体P﹣ABC即正三棱锥P﹣ABC,所以其四个面都是正三角形,在正三角形中,联系选项B、C、D中有证明到垂直关系,应该联想到“三线合一”.D,E,F分别是AB,BC,CA的中点,由中位线定理可得BC∥DF,所以BC∥平面PDF,进而可得答案.【解答】解:由DF∥BC可得BC∥平面PDF,故A正确.若PO⊥平面ABC,垂足为O,则O在AE上,则DF⊥PO,又DF⊥AE故DF⊥平面PAE,故B正确.由DF⊥平面PAE可得,平面PAE⊥平面ABC,故D正确.故选C.【点评】本小题考查空间中的线面关系,正三角形中“三线合一”,中位线定理等基础知识,考查空间想象能力和思维能力.8.已知是奇函数,当时,
(其中为自然常数),则=
A、-1
B、1
C、3
D、-3参考答案:A略9.下列函数中,不能用二分法求零点的是
(
)A
B
C
D
参考答案:D略10.下列对应是从集合到集合映射的是A.的平方根
B.C.
D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知上有两个不同的零点,则m的取值范围是________.参考答案:[1,2)12.若不等式对任意都成立,则的取值范围为___________.参考答案:略13.函数恒过点,则
.参考答案:914.对于正整数若且为整数),当最小时,则称为的“最佳分解”,并规定(如12的分解有其中,为12的最佳分解,则)。关于有下列判断:①②;③④。其中,正确判断的序号是
.参考答案:②④15.圆和圆交于A,B两点,则弦AB的垂直平分线的方程是________.参考答案:【分析】弦AB的垂直平分线即两圆心连线.【详解】弦AB的垂直平分线即两圆心连线方程为故答案为:【点睛】本题考查了弦的垂直平分线,转化为过圆心的直线可以简化运算.16.设函数若,则x0的取值范是
.参考答案:17.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+2,则f(1)+g(1)的值等于______.参考答案:2【分析】由已知可得f(-x)=f(x),g(-x)=-g(x),结合f(x)-g(x)=x3+x2+2,可得f(-x)+g(-x)=x3+x2+2,代入x=-1即可求解.【详解】f(x),g(x)分别是定义在R上的偶函数和奇函数,∴f(-x)=f(x),g(-x)=-g(x),∵f(x)-g(x)=x3+x2+2,∴f(-x)+g(-x)=x3+x2+2,则f(1)+g(1)=-1+1+2=2.故答案为:2【点睛】本题主要考查了利用奇函数及偶函数定义求解函数值,属于基础试题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分12分)函数在一个周期内的图像如图所示,A为图像的最高点,B、C为图像与x轴的交点,且△ABC为正三角形.(1)求的值及函数的单调递增区间;(2)若,且,求的值.参考答案:函数f(x)的单调增区间为.19.(本小题满分15分)如图,已知直三棱柱,,是棱上动点,是中点,,.(Ⅰ)求证:平面;(Ⅱ)当是棱中点时,求证:∥平面;(Ⅲ)当时,求二面角的的大小是多少?参考答案:略20.已知直线,,是三条不同的直线,其中.(1)求证:直线恒过定点,并求出该点的坐标;(2)若以,的交点为圆心,为半径的圆C与直线相交于A,B两点,求的最小值.参考答案:(1)证明见解析;定点坐标;(2)【分析】(1)将整理为:,可得方程组,从而求得定点;(2)直线方程联立求得圆心坐标,将问题转化为求圆心到直线距离的最大值的问题,根据圆的性质可知最大值为,从而求得最小值.【详解】(1)证明:,可化为:令,解得:,直线恒过定点(2)将,联立可得交点坐标设到直线的距离为,则则求的最小值,即求的最大值由(1)知,直线恒过点,则最大时,,即【点睛】本题考查直线过定点问题的求解、直线被圆截得弦长的最值的求解,关键是能够根据圆的性质确定求解弦长的最小值即为求解圆心到直线距离的最大值,求得最大值从而代入求得弦长最小值.21.已知角的终边过点.(Ⅰ)求的值;(Ⅱ)若为第三象限角,且,求的值.参考答案:
…………10分
略22.如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?参考答案:【考点】HR:余弦定理.【分析】(1)根据正弦定理即可确定出AB的长;(2)设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130tm,由余弦定理可得;(3)设乙步行的速度为vm/min,从而求出v的取值范围.【解答】解:(1)在△ABC中,因为cosA=,cosC=,所以sinA=,sinC=,从而sinB=sin=sin(A+C)=sinAcosC+cosAsinC==由正弦定理,得AB===1040m.所以索道AB的长为1040m.(2)假设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130tm,所以由余弦定理得d2=(100+50t)2+(130t)2﹣2×130t×(100+50t)×=200(37t2﹣70t+50)=200,因0≤
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市更新项目建设方案
- 资料员顶岗实习报告5篇
- 计算机类实习报告集锦六篇
- 关于经理个人述职报告范文10篇
- 个人原因辞职报告书(7篇)
- 认识实习报告范文锦集九篇
- 城镇老旧小区改造项目计划书
- 2024年生石灰购销合同样本3篇
- 家用绿化养花课程设计
- 2024年消防工程设计与施工安全监理合同范本2篇
- 全册知识点梳理-2024-2025学年统编版道德与法治七年级上册
- 烟草公司化肥采购项目-化肥投标文件(技术方案)
- 2024年江苏省泰州市泰兴市中考一模语文试卷(含答案解析)
- 2024年国开电大 高级财务会计 形考任务4答案
- 【良品铺子成本控制中存在的问题及优化建议探析(定量论文)11000字】
- 2024油品供应居间合同协议书
- 牙膏采购投标合同范本
- 2023-2024学年深圳市福田区七年级上册期末数学试卷
- 安全生产治本攻坚三年行动实施方案(2024-2026年) - 副本
- 雷军2024演讲破釜沉舟
- 工业管道安装工艺标准
评论
0/150
提交评论