![上海教师进修学院附属中学高一数学文模拟试题含解析_第1页](http://file4.renrendoc.com/view2/M03/14/15/wKhkFmZF6j6ASzIEAAGUKAwS9Bc438.jpg)
![上海教师进修学院附属中学高一数学文模拟试题含解析_第2页](http://file4.renrendoc.com/view2/M03/14/15/wKhkFmZF6j6ASzIEAAGUKAwS9Bc4382.jpg)
![上海教师进修学院附属中学高一数学文模拟试题含解析_第3页](http://file4.renrendoc.com/view2/M03/14/15/wKhkFmZF6j6ASzIEAAGUKAwS9Bc4383.jpg)
![上海教师进修学院附属中学高一数学文模拟试题含解析_第4页](http://file4.renrendoc.com/view2/M03/14/15/wKhkFmZF6j6ASzIEAAGUKAwS9Bc4384.jpg)
![上海教师进修学院附属中学高一数学文模拟试题含解析_第5页](http://file4.renrendoc.com/view2/M03/14/15/wKhkFmZF6j6ASzIEAAGUKAwS9Bc4385.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海教师进修学院附属中学高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设函数是定义在R上的函数,下列函数①
②③④中是奇函数的个数(
)A.1个 B.2个 C.3个 D.4个参考答案:B①不能判定奇偶性,②是奇函数,③不能判定奇偶性,④是奇函数.即奇函数的个数是2个.本题选择B选项.
2.函数f(x)=ln|x﹣1|+2cosπx(﹣2≤x≤4)的所有零点之和等于()A.2 B.4 C.6 D.8参考答案:C【考点】根的存在性及根的个数判断;函数的图象.【分析】函数f(x)=ln|x﹣1|+2cosπx的零点,即为函数f(x)=2cosπx与函数g(x)=ln|x﹣1|的图象交点的横坐标,由图象变化的法则和余弦函数的特点作出函数的图象,由对称性可得答案.【解答】解:f(x)=ln|x﹣1|+2cosπx的零点,即为函数f(x)=﹣2cosπx与函数g(x)=ln|x﹣1|的图象交点的横坐标,由图象变化的法则可知:y=ln|x﹣1|的图象作关于y轴的对称后和原来的一起构成y=ln|x|的图象,在向右平移1个单位得到y=ln|x﹣1|的图象又f(x)=﹣2cosπx的周期为2,如图所示:两图象都关于直线x=1对称,且共有A,B,C,D,E,F,6个交点,由中点坐标公式可得:xA+xF=2,xB+xE=2,xC+xD=2,故所有交点的横坐标之和为6,故选:C.【点评】本题考查函数图象的作法,熟练作出函数的图象是解决问题的关键,属中档题.3.已知函数f(x)=,其中[x]表示不超过x的最大整数,如,[﹣3?5]=﹣4,[1?2]=1,设n∈N*,定义函数fn(x)为:f1(x)=f(x),且fn(x)=f[fn﹣1(x)](n≥2),有以下说法:①函数y=的定义域为{x|≤x≤2};②设集合A={0,1,2},B={x|f3(x)=x,x∈A},则A=B;③f2015()+f2016()=;④若集合M={x|f12(x)=x,x∈[0,2]},则M中至少包含有8个元素.其中说法正确的个数是()A.1个 B.2个 C.3个 D.4个参考答案:D【考点】分段函数的应用.【专题】新定义;数形结合;分析法;函数的性质及应用;集合.【分析】对于①,先根据定义域选择解析式来构造不等式,当0≤x≤1时,由2(1﹣x)≤x求解;当1<x≤2时,由x﹣1≤x求解,取后两个结果取并集;对于②,先求得f(0),f(1),f(2),再分别求得f(f(0)),f(f(f(0)));f(f(1)),f(f(f(1)));f(f(f(2))).再观察与自变量是否相等即可;对于③,看问题有2015,2016求值,一定用到周期性,所以先求出几个,观察是以4为周期,求解即可;对于④,结合①②③可得、0、1、2、、、、∈M,进而可得结论.【解答】解:当0≤x<1时,f(x)=2(1﹣x);当1≤x≤2时,f(x)=x﹣1.即有f(x)=,画出y=f(x)在[0,2]的图象.对于①,可得f(x)≤x,当1≤x≤2时,x﹣1≤x成立;当0≤x<1时,2(1﹣x)≤x,解得≤x<1,即有定义域为{x|≤x≤2},故①正确;对于②,当x=0时,f3(0)=f[f2(0)]=f(f(f(0)))=f(f(2))=f(1)=0成立;当x=1时,f3(1)=f[f2(1)]=f(f(f(1)))=f(f(0))=f(2)=1成立;当x=2时,f3(2)=f[f2(2)]=f(f(f(2)))=f(f(1))=f(0)=2成立;即有A=B,故②正确;对于③,f1()=2(1﹣)=,f2()=f(f())=f()=2(1﹣)=,f3()=f(f2())=f()=﹣1=,f4()=f(f3())=f()=2(1﹣)=,一般地,f4k+r()=fr()(k,r∈N).即有f2015()+f2016()=f3()+f4()=+=,故③正确;对于④,由(1)知,f()=,∴fn()=,则f12()=,∴∈M.由(2)知,对x=0、1、2,恒有f3(x)=x,∴f12(x)=x,则0、1、2∈M.由(3)知,对x=、、、,恒有f12(x)=x,∴、、、∈M.综上所述、0、1、2、、、、∈M.∴M中至少含有8个元素.故④正确.故选:D.【点评】本题考查的知识点是分段函数及分段不等式的解法,元素与集合关系的判定,函数的周期性,函数恒成立问题,分段函数问题要注意分类讨论,还考查了分段函数多重求值,要注意从内到外,根据自变量取值选择好解析式.4.数列{an}的通项公式是an=(n∈N*),若前n项的和为,则项数为(
)A.12
B.11
C.10
D.9参考答案:C5.如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是()A.点P到平面QEF的距离 B.直线PQ与平面PEF所成的角C.三棱锥P﹣QEF的体积 D.△QEF的面积参考答案:B【考点】异面直线及其所成的角.【分析】A.由于平面QEF即为对角面A1B1CD,点P为A1D1的中点,可得:点P到平面QEF即到对角面A1B1CD的距离=为定值;D.由于点Q到直线CD的距离是定值a,|EF|为定值,因此△QEF的面积=为定值;C.由A.D可知:三棱锥P﹣QEF的体积为定值;B.用排除法即可得出.【解答】解:A.∵平面QEF即为对角面A1B1CD,点P为A1D1的中点,∴点P到平面QEF即到对角面A1B1CD的距离=为定值;D.∵点Q到直线CD的距离是定值a,|EF|为定值,∴△QEF的面积=为定值;C.由A.D可知:三棱锥P﹣QEF的体积为定值;B.直线PQ与平面PEF所成的角与点Q的位置有关系,因此不是定值,或用排除法即可得出.综上可得:只有B中的值不是定值.故选:B.6.在等差数列{an}中,若,,则(
)A. B.1 C. D.参考答案:C【分析】运用等差数列的性质求得公差d,再运用通项公式解得首项即可.【详解】由题意知,所以.故选C.7.函数是
(
)A.周期为的偶函数
B.周期为的奇函数C.周期为的偶函数
D.周期为的奇函数参考答案:C略8.函数f(x)=x3-3x-3一定有零点的区间是A.(2,3)
B.(1,2)
C.(0,1)
D.(-1,0)参考答案:A略9.函数,则方程的根的个数是(
)A.7 B.5 C.3 D.1参考答案:A【分析】根据题意,分别讨论,和两种情况,根据函数解析式,即可求出结果.【详解】因为(1)当时,由,解得或,若,则或,解得或;或或;若,则或,解得;(2)当时,由,解得或(舍),所以.若,则,解得;若,则,解得.综上,方程的根的个数是7个.故选A【点睛】本题主要考查由复合函数值求参数的问题,灵活运用分类讨论的思想即可求解,属于常考题型.10.设集合A={1,2,3},集合B={﹣2,2},则A∩B=()A.? B.{2} C.{﹣2,2} D.{﹣2,1,2,3}参考答案:B【考点】交集及其运算.【分析】找出A与B的公共元素即可求出交集.【解答】解:∵集合A={1,2,3},集合B={﹣2,2},∴A∩B={2}.故选B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.二、填空题:本大题共7小题,每小题4分,共28分11.在中,,则_______,________参考答案:12.(3分)若函数f(x)=(x>0)是减函数,则实数m的取值范围是
.参考答案:(﹣1,+∞)考点: 函数单调性的性质.专题: 函数的性质及应用.分析: 根据反比例函数的单调性即可求得m的取值范围.解答: 根据反比例函数的单调性,若f(x)是减函数;则m+1>0,m>﹣1;∴实数m的取值范围是(﹣1,+∞).故答案为:(﹣1,+∞).点评: 考查反比例函数的一般形式,及反比例函数的单调性.13.已知函数在区间[0,2]上是减函数,则实数a的取值范围是
▲
.参考答案:;14.若f(x)=(x+1)(x–a)是偶函数,则实数a=。答案:1解析:参考答案:1函数f(x)是偶函数,则f(-x)=f(x);即(x+1)(x-a)=(-x+1)(-x-a),解得:a=115.(5分)已知函数f(x)=msinx+cosx(m为常数,且m<0)的最大值为2,则函数f(x)的单调递减区间为
(其中k∈Z)参考答案:[2kπ-π/4,2kπ+3π/4],(其中k∈Z)考点:正弦函数的单调性;两角和与差的正弦函数.专题:三角函数的图像与性质.分析:先根据辅助角公式求出函数的最大值,即可求出m,然后根据三角函数的单调性即可求出函数的单调区间.解答:根据辅助角公式可知函数f(x)的最大值为,即m2+2=4,∴m2=2,∵m<0,∴m=﹣,即f(x)=msinx+cosx=sinx+cosx=2cos(x+),由,得,即函数的单调递减区间为[2kπ-π/4,2kπ+3π/4],(其中k∈Z).点评:本题主要考查三角函数的图象和性质,根据辅助角公式求出m是解决本题的关键.16.已知一圆锥表面积为15πcm2,且它的侧面展开图是一个半圆,则圆锥的底面半径为cm.参考答案:【考点】棱柱、棱锥、棱台的侧面积和表面积.【分析】设圆锥的底面圆的半径为r,母线长为l,利用侧面展开图是一个半圆,求得母线长与底面半径之间的关系,代入表面积公式求r.【解答】解:设圆锥的底面圆的半径为r,母线长为l,∵侧面展开图是一个半圆,∴πl=2πr?l=2r,∵圆锥的表面积为15π,∴πr2+πrl=3πr2=15π,∴r=,故圆锥的底面半径为(cm).故答案为:.17.=__________。参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知函数(1)求函数的定义域;(2)判断的奇偶性并证明你的结论;(3)试讨论的单调性.参考答案:(1)依题意,得解得:(2)函数f(x)是奇函数.证明如下:
易知定义域关于原点对称,
又对定义域内的任意有即
故函数f(x)是奇函数.
(3)由(2)知要判断其单调性只需要确定在上的单调性即可设是区间上的任意两个实数,且=
∵0<x<x<1∴由得
即∴在上为减函数;
同理可证在上也为减函数.19.已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.(1)求实数a,b间满足的等量关系;(2)求线段PQ长的最小值;(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.参考答案:【考点】圆的标准方程;圆的切线方程.【专题】压轴题;直线与圆.【分析】(1)由勾股定理可得PQ2=OP2﹣OQ2=PA2,即(a2+b2)﹣1=(a﹣2)2+(b﹣1)2,化简可得a,b间满足的等量关系.(2)由于PQ==,利用二次函数的性质求出它的最小值.(3)设⊙P的半径为R,可得|R﹣1|≤PO≤R+1.利用二次函数的性质求得OP=的最小值为,此时,求得b=﹣2a+3=,R取得最小值为﹣1,从而得到圆的标准方程.【解答】解:(1)连接OQ,∵切点为Q,PQ⊥OQ,由勾股定理可得PQ2=OP2﹣OQ2.由已知PQ=PA,可得PQ2=PA2,即(a2+b2)﹣1=(a﹣2)2+(b﹣1)2.化简可得2a+b﹣3=0.(2)∵PQ====,故当a=时,线段PQ取得最小值为.(3)若以P为圆心所作的⊙P的半径为R,由于⊙O的半径为1,∴|R﹣1|≤PO≤R+1.而OP===,故当a=时,PO取得最小值为,此时,b=﹣2a+3=,R取得最小值为﹣1.故半径最小时⊙P的方程为+=.【点评】本题主要考查求圆的标准方程的方法,圆的切线的性质,两点间的距离公式以及二次函数的性质应用,属于中档题.20.(本小题满分12分)如图所示,圆锥的轴截面为等腰直角,为底面圆周上一点.(1)若的中点为,,求证平面;(2)如果,,求此圆锥的全面积.参考答案:①连接OC,∵OQ=OB,C为QB的中点,∴OC⊥QB
…2分∵SO⊥平面ABQ,BQ平面ABQ∴SO⊥BQ,结合SO∩OC=0,可得BQ⊥平面SOC∵OH?平面SOC,∴BQ⊥OH,
…5分∵OH⊥SC,SC、BQ是平面SBQ内的相交直线,∴OH⊥平面SBQ;
…6分②∵∠AOQ=60°,QB=,∴直角△ABQ中,∠ABQ=30°,可得AB==4…8分∵圆锥的轴截面为等腰直角△SAB,∴圆锥的底面半径为2,高SO=2,可得母线SA=2,因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国银杏树数据监测研究报告
- 《心脏讲课用》课件
- 《路基路面定额》课件
- 海洋知识竞赛复习测试卷含答案
- 《担当的命题作文》课件
- 银行保险衔接训练课件-客户类型分析
- 《功率高中物理》课件
- 《高等数学A习题课》课件
- 【语文】《促织》课件++2024-2025学年统编版高一语文必修下册
- 《POP字体书写》课件
- 《服装品牌策划》课件
- 近五年陕西中考数学真题及答案2024
- 二零二五年度集团公司内部项目专项借款合同范本3篇
- 低空飞行旅游观光项目可行性实施报告
- 2024年版:煤矿用压力罐设计与安装合同
- 2024年贵州云岩区总工会招聘工会社会工作者笔试真题
- 《算法定价垄断属性问题研究的国内外文献综述》4200字
- 2024年04月浙江义乌农商银行春季招考笔试历年参考题库附带答案详解
- 涉密计算机保密培训
- 美国药典-USP-561-植物源性物质
- 挂靠免责协议书范本
评论
0/150
提交评论