2024届河北省石家庄市重点中学高考考前模拟数学试题含解析_第1页
2024届河北省石家庄市重点中学高考考前模拟数学试题含解析_第2页
2024届河北省石家庄市重点中学高考考前模拟数学试题含解析_第3页
2024届河北省石家庄市重点中学高考考前模拟数学试题含解析_第4页
2024届河北省石家庄市重点中学高考考前模拟数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省石家庄市重点中学高考考前模拟数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知四棱锥的底面为矩形,底面,点在线段上,以为直径的圆过点.若,则的面积的最小值为()A.9 B.7 C. D.2.某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,……,599,600.从中抽取60个样本,下图提供随机数表的第4行到第6行:若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是()A.324 B.522 C.535 D.5783.已知集合,则全集则下列结论正确的是()A. B. C. D.4.已知双曲线与双曲线有相同的渐近线,则双曲线的离心率为()A. B. C. D.5.已知,函数在区间上恰有个极值点,则正实数的取值范围为()A. B. C. D.6.已知三棱锥中,是等边三角形,,则三棱锥的外接球的表面积为()A. B. C. D.7.某几何体的三视图如图所示,则此几何体的体积为()A. B.1 C. D.8.已知椭圆内有一条以点为中点的弦,则直线的方程为()A. B.C. D.9.若复数满足,则对应的点位于复平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.复数(i为虚数单位)的共轭复数是A.1+i B.1−i C.−1+i D.−1−i11.阿波罗尼斯(约公元前262~190年)证明过这样的命题:平面内到两定点距离之比为常数的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,的距离之比为,当,,不共线时,的面积的最大值是()A. B. C. D.12.设集合,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,若,且,则实数所有的可能取值构成的集合是________.14.正项等比数列|满足,且成等差数列,则取得最小值时的值为_____15.图(1)是第七届国际数学教育大会(ICME-7)的会徽图案,它是由一串直角三角形演化而成的(如图(2)),其中,则的值是______.16.已知若存在,使得成立的最大正整数为6,则的取值范围为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某公司欲投资一新型产品的批量生产,预计该产品的每日生产总成本价格)(单位:万元)是每日产量(单位:吨)的函数:.(1)求当日产量为吨时的边际成本(即生产过程中一段时间的总成本对该段时间产量的导数);(2)记每日生产平均成本求证:;(3)若财团每日注入资金可按数列(单位:亿元)递减,连续注入天,求证:这天的总投入资金大于亿元.18.(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线与直线的直角坐标方程;(2)若曲线与直线交于两点,求的值.19.(12分)2019年是五四运动100周年.五四运动以来的100年,是中国青年一代又一代接续奋斗、凯歌前行的100年,是中口青年用青春之我创造青春之中国、青春之民族的100年.为继承和发扬五四精神在青年节到来之际,学校组织“五四运动100周年”知识竞赛,竞赛的一个环节由10道题目组成,其中6道A类题、4道B类题,参赛者需从10道题目中随机抽取3道作答,现有甲同学参加该环节的比赛.(1)求甲同学至少抽到2道B类题的概率;(2)若甲同学答对每道A类题的概率都是,答对每道B类题的概率都是,且各题答对与否相互独立.现已知甲同学恰好抽中2道A类题和1道B类题,用X表示甲同学答对题目的个数,求随机变量X的分布列和数学期望.20.(12分)如图,在四棱柱中,底面是正方形,平面平面,,.过顶点,的平面与棱,分别交于,两点.(Ⅰ)求证:;(Ⅱ)求证:四边形是平行四边形;(Ⅲ)若,试判断二面角的大小能否为?说明理由.21.(12分)已知抛物线的顶点为原点,其焦点关于直线的对称点为,且.若点为的准线上的任意一点,过点作的两条切线,其中为切点.(1)求抛物线的方程;(2)求证:直线恒过定点,并求面积的最小值.22.(10分)已知函数.(1)当时,试求曲线在点处的切线;(2)试讨论函数的单调区间.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到之间的等量关系,再用表示出的面积,利用均值不等式即可容易求得.【详解】设,,则.因为平面,平面,所以.又,,所以平面,则.易知,.在中,,即,化简得.在中,,.所以.因为,当且仅当,时等号成立,所以.故选:C.【点睛】本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.2、D【解析】

因为要对600个零件进行编号,所以编号必须是三位数,因此按要求从第6行第6列开始向右读取数据,大于600的,重复出现的舍去,直至得到第六个编号.【详解】从第6行第6列开始向右读取数据,编号内的数据依次为:,因为535重复出现,所以符合要求的数据依次为,故第6个数据为578.选D.【点睛】本题考查了随机数表表的应用,正确掌握随机数表法的使用方法是解题的关键.3、D【解析】

化简集合,根据对数函数的性质,化简集合,按照集合交集、并集、补集定义,逐项判断,即可求出结论.【详解】由,则,故,由知,,因此,,,,故选:D【点睛】本题考查集合运算以及集合间的关系,求解不等式是解题的关键,属于基础题.4、C【解析】

由双曲线与双曲线有相同的渐近线,列出方程求出的值,即可求解双曲线的离心率,得到答案.【详解】由双曲线与双曲线有相同的渐近线,可得,解得,此时双曲线,则曲线的离心率为,故选C.【点睛】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,其中解答中熟记双曲线的几何性质,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.5、B【解析】

先利用向量数量积和三角恒等变换求出,函数在区间上恰有个极值点即为三个最值点,解出,,再建立不等式求出的范围,进而求得的范围.【详解】解:令,解得对称轴,,又函数在区间恰有个极值点,只需解得.故选:.【点睛】本题考查利用向量的数量积运算和三角恒等变换与三角函数性质的综合问题.(1)利用三角恒等变换及辅助角公式把三角函数关系式化成或的形式;(2)根据自变量的范围确定的范围,根据相应的正弦曲线或余弦曲线求值域或最值或参数范围.6、D【解析】

根据底面为等边三角形,取中点,可证明平面,从而,即可证明三棱锥为正三棱锥.取底面等边的重心为,可求得到平面的距离,画出几何关系,设球心为,即可由球的性质和勾股定理求得球的半径,进而得球的表面积.【详解】设为中点,是等边三角形,所以,又因为,且,所以平面,则,由三线合一性质可知所以三棱锥为正三棱锥,设底面等边的重心为,可得,,所以三棱锥的外接球球心在面下方,设为,如下图所示:由球的性质可知,平面,且在同一直线上,设球的半径为,在中,,即,解得,所以三棱锥的外接球表面积为,故选:D.【点睛】本题考查了三棱锥的结构特征和相关计算,正三棱锥的外接球半径求法,球的表面积求法,对空间想象能力要求较高,属于中档题.7、C【解析】该几何体为三棱锥,其直观图如图所示,体积.故选.8、C【解析】

设,,则,,相减得到,解得答案.【详解】设,,设直线斜率为,则,,相减得到:,的中点为,即,故,直线的方程为:.故选:.【点睛】本题考查了椭圆内点差法求直线方程,意在考查学生的计算能力和应用能力.9、D【解析】

利用复数模的计算、复数的除法化简复数,再根据复数的几何意义,即可得答案;【详解】,对应的点,对应的点位于复平面的第四象限.故选:D.【点睛】本题考查复数模的计算、复数的除法、复数的几何意义,考查运算求解能力,属于基础题.10、B【解析】分析:化简已知复数z,由共轭复数的定义可得.详解:化简可得z=∴z的共轭复数为1﹣i.故选B.点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题.11、A【解析】

根据平面内两定点,间的距离为2,动点与,的距离之比为,利用直接法求得轨迹,然后利用数形结合求解.【详解】如图所示:设,,,则,化简得,当点到(轴)距离最大时,的面积最大,∴面积的最大值是.故选:A.【点睛】本题主要考查轨迹的求法和圆的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.12、C【解析】

解对数不等式求得集合,由此求得两个集合的交集.【详解】由,解得,故.依题意,所以.故选:C【点睛】本小题主要考查对数不等式的解法,考查集合交集的概念和运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】

化简集合,由,以及,即可求出结论.【详解】集合,若,则的可能取值为,0,2,3,又因为,所以实数所有的可能取值构成的集合是.故答案为:.【点睛】本题考查集合与元素的关系,理解题意是解题的关键,属于基础题.14、2【解析】

先由题意列出关于的方程,求得的通项公式,再表示出即可求解.【详解】解:设公比为,且,时,上式有最小值,故答案为:2.【点睛】本题考查等比数列、等差数列的有关性质以及等比数列求积、求最值的有关运算,中档题.15、【解析】

先求出向量和夹角的余弦值,再由公式即得.【详解】如图,过点作的平行线交于点,那么向量和夹角为,,,,,且是直角三角形,,同理得,,.故答案为:【点睛】本题主要考查平面向量数量积,解题关键是找到向量和的夹角.16、【解析】

由题意得,分类讨论作出函数图象,求得最值解不等式组即可.【详解】原问题等价于,当时,函数图象如图此时,则,解得:;当时,函数图象如图此时,则,解得:;当时,函数图象如图此时,则,解得:;当时,函数图象如图此时,则,解得:;综上,满足条件的取值范围为.故答案为:【点睛】本题主要考查了对勾函数的图象与性质,函数的最值求解,存在性问题的求解等,考查了分类讨论,转化与化归的思想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析;(3)证明见解析.【解析】

(1)求得函数的导函数,由此求得求当日产量为吨时的边际成本.(2)将所要证明不等式转化为证明,构造函数,利用导数证得,由此证得不等式成立.(3)利用(2)的结论,判断出,由此结合对数运算,证得.【详解】(1)因为所以当时,(2)要证,只需证,即证,设则所以在上单调递减,所以所以,即;(3)因为又由(2)知,当时,所以所以所以【点睛】本小题主要考查导数的计算,考查利用导数证明不等式,考查放缩法证明数列不等式,属于难题.18、(1)曲线的直角坐标方程为;直线的直角坐标方程为(2)【解析】

(1)由公式可化极坐标方程为直角坐标方程,消参法可化参数方程为普通方程;(2)联立两曲线方程,解方程组得两交点坐标,从而得两点间距离.【详解】解:(1)曲线的直角坐标方程为直线的直角坐标方程为(2)据解,得或【点睛】本题考查极坐标与直角坐标的互化,考查参数方程与普通方程的互化,属于基础题.19、(1);(2)分布列见解析,期望为.【解析】

(1)甲同学至少抽到2道B类题包含两个事件:一个抽到2道B类题,一个是抽到3个B类题,计算出抽法数后可求得概率;(2)的所有可能值分别为,依次计算概率得分布列,再由期望公式计算期望.【详解】(1)令“甲同学至少抽到2道B类题”为事件,则抽到2道类题有种取法,抽到3道类题有种取法,∴;(2)的所有可能值分别为,,,,,∴的分布列为:0123【点睛】本题考查古典概型,考查随机变量的概率分布列和数学期望.解题关键是掌握相互独立事件同时发生的概率计算公式.20、(1)证明见解析;(2)证明见解析;(3)不能为.【解析】

(1)由平面平面,可得平面,从而证明;(2)由平面与平面没有交点,可得与不相交,又与共面,所以,同理可证,得证;(3)作交于点,延长交于点,连接,根据三垂线定理,确定二面角的平面角,若,,由大角对大边知,两者矛盾,故二面角的大小不能为.【详解】(1)由平面平面,平面平面,且,所以平面,又平面,所以;(2)依题意都在平面上,因此平面,平面,又平面,平面,平面与平面平行,即两个平面没有交点,则与不相交,又与共面,所以,同理可证,所以四边形是平行四边形;(3)不能.如图,作交于点,延长交于点,连接,由,,,所以平面,则平面,又,根据三垂线定理,得到,所以是二面角的平面角,若,则是等腰直角三角形,,又,所以中,由大角对大边知,所以,这与上面相矛盾,所以二面角的大小不能为.【点睛】本题考查了立体几何中的线线平行和垂直的判定问题,和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,属中档题.21、(1)(2)见解析,最小值为4【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论