版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江苏省靖江市重点达标名校中考数学猜题卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.下列四个几何体,正视图与其它三个不同的几何体是()A. B.C. D.2.a、b互为相反数,则下列成立的是()A.ab=1 B.a+b=0 C.a=b D.=-13.下列各式正确的是()A. B.C. D.4.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是()A. B.C. D.5.已知xa=2,xb=3,则x3a﹣2b等于()A. B.﹣1 C.17 D.726.在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿()A.20 B.25 C.30 D.357.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请个队参赛,则满足的关系式为()A. B. C. D.8.下列各式中计算正确的是A. B. C. D.9.如图,AB是的直径,点C,D在上,若,则的度数为A. B. C. D.10.如图是一个由4个相同的正方体组成的立体图形,它的左视图为()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.1017年11月7日,山西省人民政府批准发布的《山西省第一次全国地理国情普查公报》显示,山西省国土面积约为156700km1,该数据用科学记数法表示为__________km1.12.如图,在同一平面内,将边长相等的正三角形和正六边形的一条边重合并叠在一起,则∠1的度数为_____.13.如图,在中,,点D、E分别在边、上,且,如果,,那么________.14.已知m=,n=,那么2016m﹣n=_____.15.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为_________.16.“若实数a,b,c满足a<b<c,则a+b<c”,能够说明该命题是假命题的一组a,b,c的值依次为_____.三、解答题(共8题,共72分)17.(8分)问题提出(1).如图1,在四边形ABCD中,AB=BC,AD=CD=3,∠BAD=∠BCD=90°,∠ADC=60°,则四边形ABCD的面积为_;问题探究(2).如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠ABC=135°,AB=22,BC=3,在AD、CD上分别找一点E、F,使得△BEF的周长最小,作出图像即可.18.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:此次共调查了名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.19.(8分)在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形;若CF=3,BF=4,DF=5,求证:AF平分∠DAB.20.(8分)对于平面直角坐标系xOy中的点P和直线m,给出如下定义:若存在一点P,使得点P到直线m的距离等于1,则称P为直线m的平行点.(1)当直线m的表达式为y=x时,①在点,,中,直线m的平行点是______;②⊙O的半径为,点Q在⊙O上,若点Q为直线m的平行点,求点Q的坐标.(2)点A的坐标为(n,0),⊙A半径等于1,若⊙A上存在直线的平行点,直接写出n的取值范围.21.(8分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:).22.(10分)如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)证明:四边形AHBG是菱形;若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)23.(12分)我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?24.已知抛物线y=﹣x2﹣4x+c经过点A(2,0).(1)求抛物线的解析式和顶点坐标;(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.①若B、C都在抛物线上,求m的值;②若点C在第四象限,当AC2的值最小时,求m的值.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
根据几何体的三视图画法先画出物体的正视图再解答.【详解】解:A、B、D三个几何体的主视图是由左上一个正方形、下方两个正方形构成的,而C选项的几何体是由上方2个正方形、下方2个正方形构成的,故选:C.【点睛】此题重点考查学生对几何体三视图的理解,掌握几何体的主视图是解题的关键.2、B【解析】
依据相反数的概念及性质即可得.【详解】因为a、b互为相反数,所以a+b=1,故选B.【点睛】此题主要考查相反数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,1的相反数是1.3、A【解析】∵,则B错;,则C;,则D错,故选A.4、A【解析】
根据题意,将运动过程分成两段.分段讨论求出解析式即可.【详解】∵BD=2,∠B=60°,∴点D到AB距离为,当0≤x≤2时,y=;当2≤x≤4时,y=.根据函数解析式,A符合条件.故选A.【点睛】本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式.5、A【解析】∵xa=2,xb=3,∴x3a−2b=(xa)3÷(xb)2=8÷9=,故选A.6、B【解析】设可贷款总量为y,存款准备金率为x,比例常数为k,则由题意可得:,,∴,∴当时,(亿),∵400-375=25,∴该行可贷款总量减少了25亿.故选B.7、A【解析】
根据应用题的题目条件建立方程即可.【详解】解:由题可得:即:故答案是:A.【点睛】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.8、B【解析】
根据完全平方公式对A进行判断;根据幂的乘方与积的乘方对B、C进行判断;根据合并同类项对D进行判断.【详解】A.,故错误.B.,正确.C.,故错误.D.,故错误.故选B.【点睛】考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.9、B【解析】试题解析:连接AC,如图,∵AB为直径,∴∠ACB=90°,∴∴故选B.点睛:在同圆或等圆中,同弧或等弧所对的圆周角相等.10、B【解析】
根据左视图的定义,从左侧会发现两个正方形摞在一起.【详解】从左边看上下各一个小正方形,如图故选B.二、填空题(本大题共6个小题,每小题3分,共18分)11、1.267×102【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于126700有6位,所以可以确定n=6﹣1=2.【详解】解:126700=1.267×102.故答案为1.267×102.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.12、60°【解析】
先根据多边形的内角和公式求出正六边形每个内角的度数,然后用正六边形内角的度数减去正三角形内角的度数即可.【详解】(6-2)×180°÷6=120°,∠1=120°-60°=60°.故答案为:60°.【点睛】题考查了多边形的内角和公式,熟记多边形的内角和公式为(n-2)×180°是解答本题的关键.13、【解析】
根据,,得出,利用相似三角形的性质解答即可.【详解】∵,,∴,∴,即,∴,∵,∴,故答案为:【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.14、1【解析】
根据积的乘方的性质将m的分子转化为以3和5为底数的幂的积,然后化简从而得到m=n,再根据任何非零数的零次幂等于1解答.【详解】解:∵m===,∴m=n,∴2016m-n=20160=1.故答案为:1【点睛】本题考查了同底数幂的除法,积的乘方的性质,难点在于转化m的分母并得到m=n.15、【解析】
由勾股定理可先求得AM,利用条件可证得△ABM∽△EMA,则可求得AE的长,进一步可求得DE.【详解】详解:∵正方形ABCD,∴∠B=90°.∵AB=12,BM=5,∴AM=1.∵ME⊥AM,∴∠AME=90°=∠B.∵∠BAE=90°,∴∠BAM+∠MAE=∠MAE+∠E,∴∠BAM=∠E,∴△ABM∽△EMA,∴=,即=,∴AE=,∴DE=AE﹣AD=﹣12=.故答案为.【点睛】本题主要考查相似三角形的判定和性质,利用条件证得△ABM∽△EMA是解题的关键.16、答案不唯一,如1,2,3;【解析】分析:设a,b,c是任意实数.若a<b<c,则a+b<c”是假命题,则若a<b<c,则a+b≥c”是真命题,举例即可,本题答案不唯一详解:设a,b,c是任意实数.若a<b<c,则a+b<c”是假命题,则若a<b<c,则a+b≥c”是真命题,可设a,b,c的值依次1,2,3,(答案不唯一),故答案为1,2,3.点睛:本题考查了命题的真假,举例说明即可,三、解答题(共8题,共72分)17、(1)3,(2)见解析【解析】
(1)易证△ABD≌△CBD,再利用含30°的直角三角形求出AB、BD的长,即可求出面积.(2)作点B关于AD的对称点B’,点B关于CD的对应点B’’,连接B’B’’,与AD、CD交于EF,△AEF即为所求.【详解】(1)∵AB=BC,AD=CD=3,∠BAD=∠BCD=90°,∴△ABD≌△CBD(HL)∴∠ADB=∠CDB=∠ADC=30°,∴AB=∴S△ABD==∴四边形ABCD的面积为2S△ABD=(2)作点B关于AD的对称点B’,点B关于CD的对应点B’’,连接B’B’’,与AD、CD交于EF,△BEF的周长为BE+EF+BF=B’E+EF+B’’F=B’B’’为最短.故此时△BEF的周长最小.【点睛】此题主要考查含30°的直角三角形与对称性的应用,解题的关键是根据题意作出相应的图形进行求解.18、(1)200;(2)见解析;(3)126°;(4)240人.【解析】
(1)根据文史类的人数以及文史类所占的百分比即可求出总人数(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数【详解】(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.【点睛】此题考查扇形统计图和条形统计图,看懂图中数据是解题关键19、(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.20、(1)①,;②,,,;(2).【解析】
(1)①根据平行点的定义即可判断;②分两种情形:如图1,当点B在原点上方时,作OH⊥AB于点H,可知OH=1.如图2,当点B在原点下方时,同法可求;(2)如图,直线OE的解析式为,设直线BC//OE交x轴于C,作CD⊥OE于D.设⊙A与直线BC相切于点F,想办法求出点A的坐标,再根据对称性求出左侧点A的坐标即可解决问题;【详解】解:(1)①因为P2、P3到直线y=x的距离为1,所以根据平行点的定义可知,直线m的平行点是,,故答案为,.②解:由题意可知,直线m的所有平行点组成平行于直线m,且到直线m的距离为1的直线.设该直线与x轴交于点A,与y轴交于点B.如图1,当点B在原点上方时,作OH⊥AB于点H,可知OH=1.由直线m的表达式为y=x,可知∠OAB=∠OBA=45°.所以.直线AB与⊙O的交点即为满足条件的点Q.连接,作轴于点N,可知.在中,可求.所以.在中,可求.所以.所以点的坐标为.同理可求点的坐标为.如图2,当点B在原点下方时,可求点的坐标为点的坐标为,综上所述,点Q的坐标为,,,.(2)如图,直线OE的解析式为,设直线BC∥OE交x轴于C,作CD⊥OE于D.当CD=1时,在Rt△COD中,∠COD=60°,∴,设⊙A与直线BC相切于点F,在Rt△ACE中,同法可得,∴,∴,根据对称性可知,当⊙A在y轴左侧时,,观察图象可知满足条件的N的值为:.【点睛】此题考查一次函数综合题、直线与圆的位置关系、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题.21、5.7米.【解析】试题分析:由题意,过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.试题解析:解:如答图,过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6.在Rt△ACH中,CH=AH•tan∠CAH=6tan30°=6×,∵DH=1.5,∴CD=+1.5.在Rt△CDE中,∵∠CED=60°,∴CE=(米).答:拉线CE的长约为5.7米.考点:1.解直角三角形的应用(仰角俯角问题);2.锐角三角函数定义;3.特殊角的三角函数值;4.矩形的判定和性质.22、(1)详见解析;(2)详见解析;(3)需要添加的条件是AB=BC.【解析】试题分析:(1)可根据已知条件,或者图形的对称性合理选择全等三角形,如△ABC≌△BAD,利用SAS可证明.(2)由已知可得四边形AHBG是平行四边形,由(1)可知∠ABD=∠BAC,得到△GAB为等腰三角形,▱AHBG的两邻边相等,从而得到平行四边形AHBG是菱形.试题解析:(1)解:△ABC≌△BAD.证明:∵AD=BC,∠ABC=∠BAD=90°,AB=BA,∴△ABC≌△BAD(SAS).(2)证明:∵AH∥GB,BH∥GA,∴四边形AHBG是平行四边形.∵△ABC≌△BAD,∴∠ABD=∠BAC.∴GA=GB.∴平行四边形AHBG是菱形.(3)需要添加的条件是AB=BC.点睛:本题考查全等三角形,四边形等几何知识,考查几何论证和思维能力,第(3)小题是开放题,答案不唯一.23、1.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=1,所以二进制中的数101011等于十进制中的1.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.24、(1)抛物线解析式为y=﹣x2﹣4x+12,顶点坐标为(﹣2,16);(2)①m=2或m=﹣2;②m的值为.【解析】分析:(1)把点A(2,0)代入抛物线y=﹣x2﹣4x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)①由B(m,n)在抛物线上可得﹣m2﹣4m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(﹣
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《电脑棋手》课件
- 《远山如黛》少儿美术教育绘画课件创意教程教案
- 课程分享 课件
- 西南林业大学《比较文学概论》2021-2022学年第一学期期末试卷
- 西京学院《网络数据库》2021-2022学年期末试卷
- 西京学院《建筑设备》2021-2022学年第一学期期末试卷
- 2024年教师系列中高级职称评审有关政策解读附件10
- 西京学院《国际结算与贸易融资》2022-2023学年第一学期期末试卷
- 西京学院《单片机原理及应用》2022-2023学年期末试卷
- 西华师范大学《中小学综合实践活动》2023-2024学年第一学期期末试卷
- 汽车eps行业国内外市场发展前景分析与投资风险预测报告
- 短视频运营实战:抖音短视频运营
- 园长进班指导制度方案及流程
- 装修垃圾清运处置方案
- JC-T 2536-2019水泥-水玻璃灌浆材料
- HG-T 20583-2020 钢制化工容器结构设计规范
- 品牌授权协议书
- 郑州人才公寓策划方案
- 艺术设计就业职业生涯规划
- 特殊餐食种类课件
- 《狙击手》和《新神榜杨戬》电影赏析
评论
0/150
提交评论