




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济宁市实验中学2024年高三第二次联考数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,夹角为,,,则()A.2 B.4 C. D.2.一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是()A. B. C. D.3.若复数,则()A. B. C. D.204.复数为纯虚数,则()A.i B.﹣2i C.2i D.﹣i5.点在曲线上,过作轴垂线,设与曲线交于点,,且点的纵坐标始终为0,则称点为曲线上的“水平黄金点”,则曲线上的“水平黄金点”的个数为()A.0 B.1 C.2 D.36.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于()A.16 B.17 C.18 D.197.将函数的图像向右平移个单位长度,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,若为奇函数,则的最小值为()A. B. C. D.8.已知函数,若所有点,所构成的平面区域面积为,则()A. B. C.1 D.9.点为不等式组所表示的平面区域上的动点,则的取值范围是()A. B. C. D.10.已知是虚数单位,若,,则实数()A.或 B.-1或1 C.1 D.11.某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为A. B. C. D.12.在中,内角A,B,C所对的边分别为a,b,c,且.若,的面积为,则()A.5 B. C.4 D.16二、填空题:本题共4小题,每小题5分,共20分。13.正方体的棱长为2,是它的内切球的一条弦(我们把球面上任意两点之间的线段称为球的弦),为正方体表面上的动点,当弦的长度最大时,的取值范围是______.14.设是公差不为0的等差数列的前n项和,且,则______.15.电影《厉害了,我的国》于2018年3月正式登陆全国院线,网友纷纷表示,看完电影热血沸腾“我为我的国家骄傲,我为我是中国人骄傲!”《厉害了,我的国》正在召唤我们每一个人,不忘初心,用奋斗书写无悔人生,小明想约甲、乙、丙、丁四位好朋友一同去看《厉害了,我的国》,并把标识为的四张电影票放在编号分别为1,2,3,4的四个不同的盒子里,让四位好朋友进行猜测:甲说:第1个盒子里放的是,第3个盒子里放的是乙说:第2个盒子里放的是,第3个盒子里放的是丙说:第4个盒子里放的是,第2个盒子里放的是丁说:第4个盒子里放的是,第3个盒子里放的是小明说:“四位朋友你们都只说对了一半”可以预测,第4个盒子里放的电影票为_________16.若,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)函数(1)证明:;(2)若存在,且,使得成立,求取值范围.18.(12分)在锐角中,,,分别是角,,所对的边,的面积,且满足,则的取值范围是()A. B. C. D.19.(12分)求函数的最大值.20.(12分)如图,在三棱柱中,已知四边形为矩形,,,,的角平分线交于.(1)求证:平面平面;(2)求二面角的余弦值.21.(12分)已知函数,,且.(1)当时,求函数的减区间;(2)求证:方程有两个不相等的实数根;(3)若方程的两个实数根是,试比较,与的大小,并说明理由.22.(10分)为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北、湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区,在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有50家企事业单位,150家个体经营户,普查情况如下表所示:普查对象类别顺利不顺利合计企事业单位401050个体经营户10050150合计14060200(1)写出选择5个国家综合试点地区采用的抽样方法;(2)根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”;(3)以该小区的个体经营户为样本,频率作为概率,从全国个体经营户中随机选择3家作为普查对象,入户登记顺利的对象数记为,写出的分布列,并求的期望值.附:0.100.0100.0012.7066.63510.828
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据模长计算公式和数量积运算,即可容易求得结果.【详解】由于,故选:A.【点睛】本题考查向量的数量积运算,模长的求解,属综合基础题.2、D【解析】
设圆锥的母线长为l,底面半径为R,再表达圆锥表面积与球的表面积公式,进而求得即可得圆锥轴截面底角的大小.【详解】设圆锥的母线长为l,底面半径为R,则有,解得,所以圆锥轴截面底角的余弦值是,底角大小为.故选:D【点睛】本题考查圆锥的表面积和球的表面积公式,属于基础题.3、B【解析】
化简得到,再计算模长得到答案.【详解】,故.故选:.【点睛】本题考查了复数的运算,复数的模,意在考查学生的计算能力.4、B【解析】
复数为纯虚数,则实部为0,虚部不为0,求出,即得.【详解】∵为纯虚数,∴,解得..故选:.【点睛】本题考查复数的分类,属于基础题.5、C【解析】
设,则,则,即可得,设,利用导函数判断的零点的个数,即为所求.【详解】设,则,所以,依题意可得,设,则,当时,,则单调递减;当时,,则单调递增,所以,且,有两个不同的解,所以曲线上的“水平黄金点”的个数为2.故选:C【点睛】本题考查利用导函数处理零点问题,考查向量的坐标运算,考查零点存在性定理的应用.6、B【解析】
由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,代入四个选项进行验证即可.【详解】解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数.若输出,则不符合题意,排除;若输出,则,符合题意.故选:B.【点睛】本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答.7、C【解析】
根据三角函数的变换规则表示出,根据是奇函数,可得的取值,再求其最小值.【详解】解:由题意知,将函数的图像向右平移个单位长度,得,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,,因为是奇函数,所以,解得,因为,所以的最小值为.故选:【点睛】本题考查三角函数的变换以及三角函数的性质,属于基础题.8、D【解析】
依题意,可得,在上单调递增,于是可得在上的值域为,继而可得,解之即可.【详解】解:,因为,,所以,在上单调递增,则在上的值域为,因为所有点所构成的平面区域面积为,所以,解得,故选:D.【点睛】本题考查利用导数研究函数的单调性,理解题意,得到是关键,考查运算能力,属于中档题.9、B【解析】
作出不等式对应的平面区域,利用线性规划的知识,利用的几何意义即可得到结论.【详解】不等式组作出可行域如图:,,,的几何意义是动点到的斜率,由图象可知的斜率为1,的斜率为:,则的取值范围是:,,.故选:.【点睛】本题主要考查线性规划的应用,根据目标函数的几何意义结合斜率公式是解决本题的关键.10、B【解析】
由题意得,,然后求解即可【详解】∵,∴.又∵,∴,∴.【点睛】本题考查复数的运算,属于基础题11、C【解析】
由三视图可知,该几何体是三棱锥,底面是边长为的等边三角形,三棱锥的高为,所以该几何体的体积,故选C.12、C【解析】
根据正弦定理边化角以及三角函数公式可得,再根据面积公式可求得,再代入余弦定理求解即可.【详解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故选:C【点睛】本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由弦的长度最大可知为球的直径.由向量的线性运用表示出,即可由范围求得的取值范围.【详解】连接,如下图所示:设球心为,则当弦的长度最大时,为球的直径,由向量线性运算可知正方体的棱长为2,则球的半径为1,,所以,而所以,即故答案为:.【点睛】本题考查了空间向量线性运算与数量积的运算,正方体内切球性质应用,属于中档题.14、18【解析】
将已知已知转化为的形式,化简后求得,利用等差数列前公式化简,由此求得表达式的值.【详解】因为,所以.故填:.【点睛】本题考查等差数列基本量的计算,考查等差数列的性质以及求和,考查运算求解能力,属于基础题.15、A或D【解析】
分别假设每一个人一半是对的,然后分别进行验证即可.【详解】解:假设甲说:第1个盒子里面放的是是对的,则乙说:第3个盒子里面放的是是对的,丙说:第2个盒子里面放的是是对的,丁说:第4个盒子里面放的是是对的,由此可知第4个盒子里面放的是;假设甲说:第3个盒子里面放的是是对的,则丙说:第4个盒子里面放的是是对的,乙说:第2个盒子里面放的是是对的,丁说:第3个盒子里面放的是是对的,由此可知第4个盒子里面放的是.故第4个盒子里面放的电影票为或.故答案为:或【点睛】本题考查简单的合情推理,考查推理论证能力、分析判断能力、归纳总结能力,属于中档题.16、【解析】
由已知利用两角差的正弦函数公式可得,两边平方,由同角三角函数基本关系式,二倍角的正弦函数公式即可计算得解.【详解】,得,在等式两边平方得,解得.故答案为:.【点睛】本题主要考查了两角差的正弦函数公式,同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见详解;(2)或或【解析】
(1)(2)首先用基本不等式得到,然后解出不等式即可【详解】(1)因为所以(2)当时所以当且仅当即时等号成立因为存在,且,使得成立所以所以或解得:或或【点睛】1.要熟练掌握绝对值的三角不等式,即2.应用基本不等式求最值时要满足“一正二定三相等”.18、A【解析】
由正弦定理化简得,解得,进而得到,利用正切的倍角公式求得,根据三角形的面积公式,求得,进而化简,即可求解.【详解】由题意,在锐角中,满足,由正弦定理可得,即,可得,所以,即,所以,所以,则,所以,可得,又由的面积,所以,则.故选:A.【点睛】本题主要考查了正弦定理、余弦定理的应用,以及三角形的面积公式和正切的倍角公式的综合应用,着重考查了推理与运算能力,属于中档试题.19、【解析】
试题分析:由柯西不等式得试题解析:因为,所以.等号当且仅当,即时成立.所以的最大值为.考点:柯西不等式求最值20、(1)见解析;(2)【解析】
(1)过点作交于,连接,设,连接,由角平分线的性质,正方形的性质,三角形的全等,证得,,由线面垂直的判断定理证得平面,再由面面垂直的判断得证.(2)平面几何知识和线面的关系可证得平面,建立空间直角坐标系,求得两个平面的法向量,根据二面角的向量计算公式可求得其值.【详解】(1)如图,过点作交于,连接,设,连接,,,又为的角平分线,四边形为正方形,,又,,,,,又为的中点,又平面,,平面,又平面,平面平面,(2)在中,,,,在中,,,又,,,,又,,平面,平面,故建立如图空间直角坐标系,则,,,,,,,设平面的一个法向量为,则,,令,得,设平面的一个法向量为,则,,令,得,由图示可知二面角是锐角,故二面角的余弦值为.【点睛】本题考查空间的面面垂直关系的证明,二面角的计算,在证明垂直关系时,注意运用平面几何中的等腰三角形的“三线合一”,勾股定理、菱形的对角线互相垂直,属于基础题.21、(1)(2)详见解析(3)【解析】
试题分析:(1)当时,,由得减区间;(2)因为,所以,因为所以,方程有两个不相等的实数根;(3)因为,,所以试题解析:(1)当时,,由得减区间;(2)法1:,,,所以,方程有两个不相等的实数根;法2:,,是开口向上的二次函数,所以,方程有两个不相等的实数根;(3)因为,,又在和增,在减,所以.考点:利用导数求函数减区间,二次函数与二次方程关系22、(1)分层抽样,简单随机抽样(抽签亦可)(2)有(3)分布列见解析,【解析】
(1)根据题意可以选用分层抽样法,或者简
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 羊驼创意画课件
- 山西省平遥县综合职业技术学校2024-2025学年高三第二学期期终调研测试文生物试题试卷含解析
- 河北东方学院《文化人类学》2023-2024学年第二学期期末试卷
- 甘肃省会宁一中2025届高三下学期4月月考化学试题含解析
- 南阳理工学院《统计分析与软件应用》2023-2024学年第一学期期末试卷
- 唐山学院《太阳能发电技术》2023-2024学年第二学期期末试卷
- 内蒙古化工职业学院《企业战略思考与行动系列讲座》2023-2024学年第二学期期末试卷
- 海东市重点中学2024-2025学年高考预测卷(全国I卷)数学试题试卷含解析
- 福建省六校2025年高三下第三次月考物理试题含解析
- 湖北大学知行学院《数学物理方法1》2023-2024学年第一学期期末试卷
- 坑机安全操作规程范本
- 饲料厂奖惩制度汇编
- 《互联网营销课件:市场拓展的七大技巧》
- Elements几何原本(中文版)
- 应用数学智慧树知到课后章节答案2023年下杨凌职业技术学院
- 动火作业许可证
- 区法院权力运行外部流程图(竖版)
- 风力发电机功率曲线统计MATLAB代码实现
- 1.潘月杰BEST管理沙盘-四川国企
- 生产设备定期保养记录
- 《数据排序-冒泡排序法》
评论
0/150
提交评论