计算机系统的存储器体系结构_第1页
计算机系统的存储器体系结构_第2页
计算机系统的存储器体系结构_第3页
计算机系统的存储器体系结构_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

计算机系统的存储器体系结构【摘要】:存储器是信息存放的载体,是计算机系统的重要组成部分。有了存储器计算机才有记忆的功能,才能把要计算和处理的数据以及程序存入计算机,使计算机能够脱离人的直接干预,自动工作。显然,存储器的容量越大,存放的信息就越多,计算机体系的功能也就越强。在计算机中,大量的操作是CPU与存储器交换信息。但是,存储器的工作速度相对于CPU总是要低1至2个数量级。因此,存储器的工作速度又是影响计算机系统数据处理速度的主要因素。为了使容量,速度与成本适当折衷,现代计算机系统都是采用多级存储体系结构:主存储器(内存储器),辅助)(外)存储器以及网络存储器。

【关键词】:内存(memory),MPU(寄存器Register),外存设备,RAM,ROM,Cache存储器。

【正文】随着计算机和微电子技术的发展,存储器无论是其器件还是体系结构都发生了很大的变化。存储器是计算机的主要部件之一,其容量,速度,价格是存储器设计时所要考虑的三个要素现在有的速度快,但容量小;有的容量大,但速度慢。一般而言,速度快的存储器容量小,位价格高。存储器一般分为内存(memory),MPU(寄存器Register),外存设备。

所谓存储系统的层次结构,就是把各种不同存储容量、存取速度和价格的存储器按层次结构组成多层存储器,并通过管理软件和辅助硬件有机组合成统一的整体,使所存放的程序和数据按层次分布在各种存储器中。目前,在计算机系统中通常采用三级层次结构来构成存储系统,主要由高速缓冲存储器Cache、主存储器和辅助存储器组成,在存储系统多级层次结构中,由上向下分三级,其容量逐渐增大,速度逐级降低,成本则逐次减少。整个结构又可以看成两个层次:它们分别是主存一辅存层次和cache一主存层次。这个层次系统中的每一种存储器都不再是孤立的存储器,而是一个有机的整体。它们在辅助硬件和计算机操作系统的管理下,可把主存一辅存层次作为一个存储整体,形成的可寻址存储空间比主存储器空间大得多。由于辅存容量大,价格低,使得存储系统的整体平均价格降低。由于Cache的存取速度可以和CPU的工作速度相媲美,故cache一主存层次可以缩小主存和cPu之间的速度差距,从整体上提高存储器系统的存取速度。尽管Cache成本高,但由于容量较小,故不会使存储系统的整体价格增加很多。

综上所述,一个较大的存储系统是由各种不同类型的存储设备构成,是一个具有多级层次结构的存储系统。该系统既有与CPU相近的速度,又有极大的容量,而成本又是较低的。其中高速缓存解决了存储系统的速度问题,辅助存储器则解决了存储系统的容量问题。采用多级层次结构的存储器系统可以有效的解决存储器的速度、容量和价格之间的矛盾。

寄存器(Register)存在于CPU中,直接服务于运算器和控制器,是CPU工作的直接对象,是工作最繁忙的存储器。寄存器的数据存储也是以字节为单位,但根据CPU的字长及工作需要,也可以操作某个位或多个字节。寄存器和运算器,控制器等集成在一起,通过CPU内部总线连接在一起,它们同步工作,寄存器是工作速度最快的存储器。

内存Memory和CPU之间通过系统总线直接连接在一起,由CPU直接控制内存的读写操作。内存的基本存储方式是存储单元(Memory

Unit)一个字节Byte长度,8个二进制位Bit。一个计算机系统的所有内存构成一个完整的连续的存储空间,物理地址从0开始连续编址。CPU在访问内存空间中的存储单元时可以随机访问,只需指定其物理地址即可。CPU在读写内存时总是以1/2/4个字节为单位进行,在此基础上可通过寄存器获取其中某个二进制位的数据/状态。单个字节Byte的数据由8位数据构成,D7~D0(最高位~最低位)。两个字节数据合在一起称为字Word,由D15~D0(最高位~最低位)共16位数据构成。四个字节数据合在一起称为双字DWord,由D31~D0(最高位~最低位)共32位数据构成。从低字节到最高字节依次存放在模4地址开始的四个存储单元中,用低字节的地址访问整个双字的所有4字节数据。,存储器有可靠性(MTBF),工作电压和功率消耗低。

内存的分类:RAM

———Random

Access

Memory随机访问存储器———计算机的主要场所。主要特点:可读写,临时性,易失性,容量大,低电压,速度快,低功耗。主要类型:SRAM(静态)和DRAM(动态)。SRAM:速度快,容量限制,构成复杂,功耗大,成本高——用作Cache。DRAM:速度慢,容量大,构成复杂,功耗大,成本低——用作主存。ROM———Read

Only

Memory只读存储器——计算机不可缺少的辅助内存。只读,永久性,非易失性,容量小,速度慢,功耗大,使用不便。主要类型:掩模式ROM,PROM,EPROM,E2PROM,Flash

ROM——数据的擦除和写入方式不同。只读存储器(ROM)是一种工作时只能读出,不能写入信息的存储器。在使用ROM时,其内部信息是不能被改变的,故一般只能存放固定程序,如监控程序、BIOS程序等。只读存储器(ROM)的特点是非易失性,即它所存储的信息一经写入,就可以长久保存,不受电源断电的影响,即使掉电后存储信息仍不会改变,十分可靠。按存储单元的结构和生产工艺的不同,只读存储器ROM又可分为:掩膜只读存储器(ROM)、可编程只读存储器(PROM)、光可擦除可编程只读存储器(EPROM)、电可擦除可编程只读存储器(E2PROM)

外存和外设:外存通过外存接口连接到系统总线,在CPU的控制下完成数据的读写操作。不同的外存工作原理不同,具体的数据读写过程和方式也不相同,但外存属于块存储器,一般采用特定方式通过总线与内存交换数据。各种外设【I/O设备】也可以看作是特定的外存。反之,各种外设也属于I/O设备。内存是动态存储器,不能永久大量数据,必须通过外存实现更大容量数据的永久性保存。

Cache存储器:多级Cache技术——L1Cache,L2Cache,L3Cache。衡量Cache工作效率的主要指标---命中率---控制策略,数据查找模式等。为了提高Cache的效率,当前在L1Cach中普遍实现了数据(D-Cache)和(L-Cache)分开缓存的技术,L2和L3大多还是数据和指令混合缓存。大幅度提高Cache的容量也能明显改善系统效率。有些外设设备也采用了Cache技术,用来提高和内存之间交换数据的效率,如硬盘等。Intel从1985年为80386CPU提供Cache支持,如今在至强系列XEON

CPU中Cache技术发挥到极致。

文中主要介绍了存储器体系结构,它是计算机的存储器件,它可以与CPU连接交换数据,也可以用来保存数据。计算机每执行完一条指令,至少都要访问一次存储器。还有它的分类、层次结构、随机存储器RAM和只读存储器ROM的基本知识结构、工作原理等内容,还要从应用的角度介绍存储器容量的形成与CPU的连接,还有辅助存储器及一些新的的技术。辅助存储器用来存放当前暂时不用的程序或数据,需要时再成批地调入主存。它属于外部设备,因此,又称其为外存储器。常用的辅助存储器有软盘、硬盘和光盘存储器等。

1.软盘存储器及其接口

软盘存储器是在聚脂薄膜圆形基片上涂一层磁性材料而形成。以体积小、价格低、结构简单、易于维护、携带方便和对环境要求不高等优点而得到广泛应用。按软盘驱动器的性能可分为单面盘和双面盘。

(1)主要技术指标如下:

磁道:磁盘上的记录面分成许多以盘片中心为圆心的同心圆,每个圆称为一个磁道

(Track)。

道密度:沿磁盘径向单位长度上的磁道数称为“道密度”。常用每英寸上的磁道数来表示。

位密度:磁道上数据的记录密度称为“位密度”。常用每英寸长度上所记录的的位单元数来表示。

扇区:磁道再划分成许多小的存储区,每个存储区称为扇区(sector)。

(2)软盘驱动器(FDD)

软盘驱动器主要完成对磁盘的读写工作,由软盘驱动机构和读写控制电路组成。

软盘驱动机构可分为:盘片定位机构;软盘驱动装置;控制磁头寻道定位部件;状态检测部件。

读写控制电路可分为:读出放大电路;写电路;抹电路。

(3)软盘控制器

软盘控制器的功能是解释来自主机的命令并向软盘驱动器发出各种控制信号,同时还要检测驱动器的状态,按规定的数据格式向驱动器读写数据等。具体操作如下:

寻道操作:将磁头定位在目标磁道上。寻道前,主机将目标道号送往磁盘控制器暂存,目标道号与磁头所在道号进行比较,决定磁头运动的道数和方向。

地址检测:主机将目标地址送往软盘控制器,控制器从驱动器上按记录格式读取地址信息并与目标地址进行比较,找到读写信息的磁盘地址。

读数据:首先检测数据标志是否正确,然后将数据字段的内容送入内存,最后进行CRC校验。

写数据:写数据时不仅要将原始信息经编码后写入磁盘,同时要写上数据区标志和CRC校验码以及间隙。如果原始信息写不满一个区段,自动插入全‘0’。

初始化:在盘片上写格式化信息,对每个磁道划分区段。

软盘控制器主要由以下几部分组成:

数据总线缓冲器:用于缓冲主机送来的并行数据。缓冲器中的数据再通过内部总线与寄存器中的信息进行传送。

读写DMA控制逻辑:主要功能是进行读写和DMA控制。采用DMA方式传送数据时,此部分可产生数据请求(DRQ)信号,借助DMA控制芯片向CPU申请总线控制。CPU响应后,让出总线控制权,接着转入DMA数据传送。

串行接口控制器:主要用来控制读写的各种信号。当采用双密记录方式写入数据时,引入补偿电路;读出时,引入锁相电路,分离出数据。

驱动器接口控制器:用来控制输入/输出的各种信号。

内部寄存器:用来存放软盘控制器芯片的状态、数据、命令和参数。新型存储器技术

1.多体交叉存储器

多体交叉存储器的设计思想是在物理上将主存分成多个模块,每一个模块都包括一个存储体、地址缓冲寄存器和数据缓冲寄存器等,即它们都是一个完整的存储器。因此,CPU就能同时访问各个存储模块,任何时候都允许对多个模块并行地进行读写操作,从而提高整个存储系统的平均访问速度。

多体交叉存储器是利用主存地址的低K位来选择模块(可确定2K个模块),高m位用来指定模块中的存储单元,这样连续的几个地址就位于相邻的几个模块中,而不是在同一个模块中,故称为“多体交叉编址”。于是CPU要访问主存的几个连续地址时,可使这几个模块同时工作,使整个主存的平均利用率得到提高。

2.闪速存储器

闪速存储器的英文名称为Flash

Memory,有时也译为“快闪存储器”。它既有EPROM价格便宜、集成度高的优点,又有E2PROM的电可擦除性、可重写性,具有可靠的非易失性,重写速度较快,对于需要实施代码或数据更新的嵌入性应用是一种理想的存储器。

3.高速缓冲存储器Cache

高速缓冲存储器(Cache)位于CPU与存储容量较大但操作速度较慢的主存之问,可以提高CPU访问存储器时的存取速度,减少处理器的等待时间,使程序员能使用一个速度与CPU相当而容量与主存相当的存储器。

高速缓冲存储器(Cache)是根据程序的局部性原理,即在一个较小时间间隔内,程序所要用到的指令或数据的地址往往集中在一个局部区域内,因而对局部范围内的存储器地址频繁访问,而对此范围外的地址则访问甚少,这就称为程序访问的局部性原理。虚拟存储器

虚拟存储器(VirtualMemory)是以存储器访问的局部性为基础,建立在主存一辅存物理体系结构上的存储管理技术。它是为了扩大存储容量,把辅存当作主存使用,在辅助软、硬件的控制下,将主

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论