初二数学上册压轴题强化检测试题带答案001_第1页
初二数学上册压轴题强化检测试题带答案001_第2页
初二数学上册压轴题强化检测试题带答案001_第3页
初二数学上册压轴题强化检测试题带答案001_第4页
初二数学上册压轴题强化检测试题带答案001_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初二数学上册压轴题强化检测试题带答案1.已知,如图1,射线分别与直线相交于两点,的平分线与直线相交于点,射线交于点,设,,且.(1)______°,______°;直线与的位置关系是______;(2)如图2,若点是射线上任意一点,且,试找出与之间存在的数量关系,证明你的结论;(3)若将图中的射线绕着端点逆时针方向旋转(如图3),分别与相交于点和时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由.3.已知△ABC是等边三角形,△ADE的顶点D在边BC上(1)如图1,若AD=DE,∠AED=60°,求∠ACE的度数;(2)如图2,若点D为BC的中点,AE=AC,∠EAC=90°,连CE,求证:CE=2BF;(3)如图3,若点D为BC的一动点,∠AED=90°,∠ADE=30°,已知△ABC的面积为4,当点D在BC上运动时,△ABE的面积是否发生变化?若不变,请求出其面积;若变化请说明理由.3.如图,已知CD是线段AB的垂直平分线,垂足为D,C在D点上方,∠BAC=30°,P是直线CD上一动点,E是射线AC上除A点外的一点,PB=PE,连BE.(1)如图1,若点P与点C重合,求∠ABE的度数;(2)如图2,若P在C点上方,求证:PD+AC=CE;(3)若AC=6,CE=2,则PD的值为(直接写出结果).4.如图1,在平面直角坐标系中,AO=AB,∠BAO=90°,BO=8cm,动点D从原点O出发沿x轴正方向以acm/s的速度运动,动点E也同时从原点O出发在y轴上以bcm/s的速度运动,且a,b满足关系式a2+b2﹣4a﹣2b+5=0,连接OD,OE,设运动的时间为t秒.(1)求a,b的值;(2)当t为何值时,△BAD≌△OAE;(3)如图2,在第一象限存在点P,使∠AOP=30°,∠APO=15°,求∠ABP.5.请按照研究问题的步骤依次完成任务.【问题背景】(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D.【简单应用】(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度数(可直接使用问题(1)中的结论)【问题探究】(3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,猜想∠P的度数为;【拓展延伸】(4)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为(用x、y表示∠P);(5)在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、D的关系,直接写出结论.6.如图1,将两块全等的三角板拼在一起,其中△ABC的边BC在直线l上,AC⊥BC且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,EF⊥FP且EF=FP.(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将三角板△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP、BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;(3)将三角板△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(2)中猜想的BQ与AP所满足的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.7.在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足.(1)求点A和点B的坐标;(2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;:(3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标.8.如图,在平面直角坐标系中,点A(0,3),B(,0),AB=6,作∠DBO=∠ABO,点H为y轴上的点,∠CAH=∠BAO,BD交y轴于点E,直线DO交AC于点C.(1)证明:△ABE为等边三角形;(2)若CD⊥AB于点F,求线段CD的长;(3)动点P从A出发,沿A﹣O﹣B路线运动,速度为1个单位长度每秒,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A路线运动,速度为2个单位长度每秒,到A点处停止运动.两点同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间时△OPM与△OQN全等?【参考答案】2.(1)30,30,AB//CD;(2)+=180°,证明见解析;(3)不变,.【分析】(1)利用非负数的性质可知:α=β=40°,推出∠EMF=∠MFN即可解决问题;(2)结论:∠FMN+∠解析:(1)30,30,AB//CD;(2)+=180°,证明见解析;(3)不变,.【分析】(1)利用非负数的性质可知:α=β=40°,推出∠EMF=∠MFN即可解决问题;(2)结论:∠FMN+∠GHF=180°.只要证明GH∥PN即可解决问题;(3)结论:的值不变,=2.如图3中,作∠PEM1的平分线交M1Q的延长线于R.只要证明∠R=∠FQM1,∠FPM1=2∠R即可;【详解】解:(1)∵,∴60-2α=0,β-30=0,∴α=β=30°,∴∠PFM=∠MFN=30°,∠EMF=30°,∴∠EMF=∠MFN,∴AB∥CD;(2)结论:∠FMN+∠GHF=180°,理由如下:如图2中,∵AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°;(3)的值不变,=2.理由如下:如图3中,作∠PEM1的平分线交M1Q的延长线于R,∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠FQM1=∠R,设∠PER=∠REB=x,∠PM1R=∠RM1B=y,则有:,可得∠EPM1=2∠R,∴∠EPM1=2∠FQM1,∴=2.【点睛】本题考查几何变换综合题、平行线的判定和性质、角平分线的定义、非负数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造平行线解决问题.3.(1)60°;(2)见解析;(3)不变,【分析】(1)由题意,先证△ADE是等边三角形,再证△BAD≌△CAE,得∠ACE=∠B=60°;(2)由题意,先求出∠BEC=30°,然后求出∠CF解析:(1)60°;(2)见解析;(3)不变,【分析】(1)由题意,先证△ADE是等边三角形,再证△BAD≌△CAE,得∠ACE=∠B=60°;(2)由题意,先求出∠BEC=30°,然后求出∠CFE=90°,利用直角三角形中30度角所对直角边等于斜边的一半,即可得证;(3)延长AE至F,使EF=AE,连DF、CF,先证明△ADF是等边三角形,然后证明△EGF≌△EHA,结合HG是定值,即可得到答案.【详解】解:(1)根据题意,∵AD=DE,∠AED=60°,∴△ADE是等边三角形,∴AD=AE,∠DAE=60°,∵AB=AC,∠BAC=60°,∴,即,∴△BAD≌△CAE,∴∠ACE=∠B=60°;(2)连CF,如图:∵AB=AC=AE,∴∠AEB=∠ABE,∵∠BAC=60°,∠EAC=90°,∴∠BAE=150°,∴∠AEB=∠ABE=15°;∵△ACE是等腰直角三角形,∴∠AEC=45°,∴∠BEC=30°,∠EBC=45°,∵AD垂直平分BC,点F在AD上,∴CF=BF,∴∠FCB=∠EBC=45°,∴∠CFE=90°,在直角△CEF中,∠CFE=90°,∠CEF=30°,∴CE=2CF=2BF;(3)延长AE至F,使EF=AE,连DF、CF,如图:∵∠AED=90°,EF=AE,∴DE是中线,也是高,∴△ADF是等腰三角形,∵∠ADE=30°,∴∠DAE=60°,∴△ADF是等边三角形;由(1)同理可求∠ACF=∠ABC=60°,∴∠ACF=∠BAC=60°,∴CF∥AB,过E作EG⊥CF于G,延长GE交BA的延长线于点H,易证△EGF≌△EHA,∴EH=EG=HG,∵HG是两平行线之间的距离,是定值,∴S△ABE=S△ABC=;【点睛】本题考查了等边三角形的判定和性质,等腰三角形的判定和性质,垂直平分线的性质,全等三角形的判定和性质,含30度角的直角三角形的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.4.(1)∠ABE=90°;(2)PD+AC=CE,见解析;(3)1【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:△BPE为等边三角形,则∠CBE=60°,故∠ABE=90°;解析:(1)∠ABE=90°;(2)PD+AC=CE,见解析;(3)1【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:△BPE为等边三角形,则∠CBE=60°,故∠ABE=90°;(2)如图2,过P作PH⊥AE于H,连BC,作PG⊥BC交BC的延长线于G,构造含30度角的直角△PCG、直角△CPH以及全等三角形(Rt△PGB≌Rt△PHE),根据含30度的直角三角形的性质和全等三角形的对应边相等证得结论;(3)分三种情况讨论,根据(2)的解题思路得到PD=AC+CE或PD=CE-AC,将数值代入求解即可.【详解】(1)解:如图1,∵点P与点C重合,CD是线段AB的垂直平分线,∴PA=PB,∴∠PAB=∠PBA=30°,∴∠BPE=∠PAB+∠PBA=60°,∵PB=PE,∴△BPE为等边三角形,∴∠CBE=60°,∴∠ABE=90°;(2)如图2,过P作PH⊥AE于H,连BC,作PG⊥BC交BC的延长线于G,∵CD垂直平分AB,∴CA=CB,∵∠BAC=30°,∴∠ACD=∠BCD=60°,∴∠GCP=∠HCP=∠BCE=∠ACD=∠BCD=60°,∴∠GPC=∠HPC=30°,∴PG=PH,CG=CH=CP,CD=AC,在Rt△PGB和Rt△PHE中,,∴Rt△PGB≌Rt△PHE(HL).∴BG=EH,即CB+CG=CE-CH,∴CB+CP=CE-CP,即CB+CP=CE,又∵CB=AC,∴CP=PD-CD=PD-AC,∴PD+AC=CE;(3)①当P在C点上方时,由(2)得:PD=CE-AC,当AC=6,CE=2时,PD=2-3=-1,不符合题意;②当P在线段CD上时,如图3,过P作PH⊥AE于H,连BC,作PG⊥BC交BC于G,此时Rt△PGB≌Rt△PHE(HL),∴BG=EH,即CB-CG=CE+CH,∴CB-CP=CE+CP,即CP=CB-CE,又∵CB=AC,∴PD=CD-CP=AC-CB+CE,∴PD=CE-AC.当AC=6,CE=2时,PD=2-3=-1,不符合题意;③当P在D点下方时,如图4,同理,PD=AC-CE,当AC=6,CE=2时,PD=3-2=1.故答案为:1.【点睛】本题主要考查了三角形综合题,综合运用全等三角形的判定与性质,含30度角直角三角形的性质,等边三角形的判定与性质等知识点,难度较大,解题时,注意要分类讨论.5.(1)a=2,b=1;(2)t=或t=8;(3)∠ABP=105°.【分析】(1)将a2+b2﹣4a﹣2b+5=0用配方法得出(a﹣2)2+(b﹣1)2=0,利用非负数的性质,即可得出结论;解析:(1)a=2,b=1;(2)t=或t=8;(3)∠ABP=105°.【分析】(1)将a2+b2﹣4a﹣2b+5=0用配方法得出(a﹣2)2+(b﹣1)2=0,利用非负数的性质,即可得出结论;(2)先由运动得出BD=|8﹣2t|,再由全等三角形的性质的出货BD=OE,建立方程求解即可得出结论.(3)先判断出△OAP≌△BAQ(SAS),得出OP=BQ,∠ABQ=∠AOP=30°,∠AQB=∠APO=15°,再求出∠OAP=135°,进而判断出△OAQ≌△BAQ(SAS),得出∠OQA=∠BQA=15°,OQ=BQ,再判断出△OPQ是等边三角形,得出∠OQP=60°,进而求出∠BQP=30°,再求出∠PBQ=75°,即可得出结论.【详解】解:(1)∵a2+b2﹣4a﹣2b+5=0,∴(a﹣2)2+(b﹣1)2=0,∴a﹣2=0,b﹣1=0,∴a=2,b=1;(2)由(1)知,a=2,b=1,由运动知,OD=2t,OE=t,∵OB=8,∴DB=|8﹣2t|∵△BAD≌△OAE,∵DB=OE,∴|8﹣2t|=t,解得,t=(如图1)或t=8(如图2);(3)如图3,过点A作AQ⊥AP,使AQ=AP,连接OQ,BQ,PQ,则∠APQ=45°,∠PAQ=90°,∵∠OAB=90°,∴∠PAQ=∠OAB,∴∠OAB+∠BAP=∠PAQ+∠BAP,即:∠OAP=∠BAQ,∵OA=AB,AD=AD,∴△OAP≌△BAQ(SAS),∴OP=BQ,∠ABQ=∠AOP=30°,∠AQB=∠APO=15°,在△AOP中,∠AOP=30°,∠APO=15°,∴∠OAP=180°﹣∠AOP﹣∠APO=135°,∴∠OAQ=360°﹣∠OAP﹣∠PAQ=135°﹣90°=135°=∠OAP,∵OA=AB,AD=AD,∴△OAQ≌△BAQ(SAS),∴∠OQA=∠BQA=15°,OQ=BQ,∵OP=BQ,∴OQ=OP,∵∠APQ=45°,∠APO=15°,∴∠OPQ=∠APO+∠APQ=60°,∴△OPQ是等边三角形,∴∠OQP=60°,∴∠BQP=∠OQP﹣∠OQA﹣∠BQA=60°﹣15°﹣15°=30°,∵BQ=PQ,∴∠PBQ=(180°﹣∠BQP)=75°,∴∠ABP=∠ABQ+∠PBQ=30°+75°=105°.【点睛】本题是三角形综合题,主要考查了配方法、非负数的性质、三角形内角和定理、等边三角形的判定和性质、全等三角形的判定及性质,构造出全等三角形是解题的关键.6.(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=.【分析】(1)根据三角形内角和定理即可证明;(2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方解析:(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=.【分析】(1)根据三角形内角和定理即可证明;(2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方程组即可得到结论;(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题;(4)根据题意得出∠B+∠CAB=∠C+∠BDC,再结合∠CAP=∠CAB,∠CDP=∠CDB,得到y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),从而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=;(5)根据题意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再结合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD+∠D=.【详解】解:(1)证明:在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(2)解:如图2,∵AP、CP分别平分∠BAD,∠BCD,∴∠1=∠2,∠3=∠4,由(1)的结论得:,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D,∴∠P=(∠B+∠D)=23°;(3)解:如图3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°-∠2,∠PCD=180°-∠3,∵∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,∴2∠P=∠B+∠D,∴∠P=(∠B+∠D)=×(36°+16°)=26°;故答案为:26°;(4)由题意可得:∠B+∠CAB=∠C+∠BDC,即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y,∠B+∠BAP=∠P+∠PDB,即y+∠BAP=∠P+∠PDB,即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP),即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=y+(∠CAB-∠CDB)=y+(x-y)=故答案为:∠P=;(5)由题意可得:∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,∴∠B-∠D=∠BCD-∠BAD,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠BAP=∠DAP,∠PCE=∠PCB,∴∠BAD+∠P=(∠BCD+∠BCE)+∠D,∴∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,∴∠P=90°+∠BCD-∠BAD+∠D=90°+(∠BCD-∠BAD)+∠D=90°+(∠B-∠D)+∠D=,故答案为:∠P=.【点睛】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型.7.(1)AB=AP,AB⊥AP;(2)BQ=AP,BQ⊥AP;(3)成立,见解析.【分析】(1)根据等腰直角三角形性质得出AB=AP,∠BAC=∠PAC=45°,求出∠BAP=90°即可;(2解析:(1)AB=AP,AB⊥AP;(2)BQ=AP,BQ⊥AP;(3)成立,见解析.【分析】(1)根据等腰直角三角形性质得出AB=AP,∠BAC=∠PAC=45°,求出∠BAP=90°即可;(2)求出CQ=CP,根据SAS证△BCQ≌△ACP,推出AP=BQ,∠CBQ=∠PAC,根据三角形内角和定理求出∠CBQ+∠BQC=90°,推出∠PAC+∠AQG=90°,求出∠AGQ=90°即可;(3)BO与AP所满足的数量关系为相等,位置关系为垂直.证明方法与(2)一样.【详解】(1)AB=AP且AB⊥AP,证明:∵AC⊥BC且AC=BC,∴△ABC为等腰直角三角形,∴∠BAC=∠ABC=,又∵△ABC与△EFP全等,同理可证∠PEF=45°,∴∠BAP=45°+45°=90°,∴AB=AP且AB⊥AP;(2)BQ与AP所满足的数量关系是AP=BQ,位置关系是AP⊥BQ,证明:延长BQ交AP于G,由(1)知,∠EPF=45°,∠ACP=90°,∴∠PQC=45°=∠QPC,∴CQ=CP,∵∠ACB=∠ACP=90°,AC=BC,∴在△BCQ和△ACP中∴△BCQ≌△ACP(SAS),∴AP=BQ,∠CBQ=∠PAC,∵∠ACB=90°,∴∠CBQ+∠BQC=90°,∵∠CQB=∠AQG,∴∠AQG+∠PAC=90°,∴∠AGQ=180°-90°=90°,∴AP⊥BQ;(3)成立.证明:如图,∵∠EPF=45°,∴∠CPQ=45°.∵AC⊥BC,∴∠CQP=∠CPQ,CQ=CP.在Rt△BCQ和Rt△ACP中,∴Rt△BCQ≌Rt△ACP(SAS)∴BQ=AP;延长BQ交AP于点N,∴∠PBN=∠CBQ.∵Rt△BCQ≌Rt△ACP,∴∠BQC=∠APC.在Rt△BCQ中,∠BQC+∠CBQ=90°,∴∠APC+∠PBN=90°.∴∠PNB=90°.∴BQ⊥AP.【点睛】本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角相等,那么这两个三角形全等;全等三角形的对应边相等.也考查了等腰直角三角形的判定与性质.8.(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)解析:(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)如图,过点F作FH⊥AO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH=2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案;(3)过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解.【详解】(1)∵,∴.∵,∴,∴,∴,∴,.(2)如图,过点F作FH⊥AO于点H∵AF⊥AE∴∠FHA=∠AOE=90°,∵∴∠AFH=∠EAO又∵AF=AE,在和中∴∴AH=EO=2,FH=AO=4∴OH=AO-AH=2∴F(-2,4)∵OA=BO,∴FH=BO在和中∴∴HD=OD∵∴HD=OD=1∴D(-1,0)∴D(-1,0),F(-2,4);(3)如图,过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S∴∴,∴∴∴∴等腰∴NQ=NO,∵NG⊥PN,NS⊥EG∴∴,∴∵,∴∵点E为线段OB的中点∴∴∴∴∴∴∴∴等腰∴NG=NP,∵∴∴∠QNG=∠ONP在和中∴∴∠NGQ=∠NPO,GQ=PO∵,∴PO=PB∴∠POE=∠PBE=45°∴∠NPO=90°∴∠NGQ=90°∴∠QGR=45°.在和中∴.∴QR=OE在和中∴∴QM=OM.∵NQ=NO,∴NM⊥OQ∵∴等腰∴∵∴在和中∴∴NS=EM=4,MS=OE=2∴N(-6,2).【点睛】本题考查了直角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论