2024年中考数学总复习:勾股定理及其逆定理-知识讲解(提高)_第1页
2024年中考数学总复习:勾股定理及其逆定理-知识讲解(提高)_第2页
2024年中考数学总复习:勾股定理及其逆定理-知识讲解(提高)_第3页
2024年中考数学总复习:勾股定理及其逆定理-知识讲解(提高)_第4页
2024年中考数学总复习:勾股定理及其逆定理-知识讲解(提高)_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年中考数学总复习:勾股定理及其逆定理(提高)【考纲要求】1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题;4.加强知识间的内在联系,用方程思想解决几何问题.以体现代数与几何之间的内在联系.【知识网络】【考点梳理】知识点一、勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方(即:).【要点诠释】勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方.2.勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法.用拼图的方法验证勾股定理的思路是:①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理.3.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:①已知直角三角形的任意两边长,求第三边,在中,,则,,;②知道直角三角形一边,可得另外两边之间的数量关系;③可运用勾股定理解决一些实际问题.知识点二、勾股定理的逆定理1.原命题与逆命题如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.2.勾股定理的逆定理勾股定理的逆定理:如果三角形的三边长,满足,那么这个三角形是直角三角形.【要点诠释】①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以,,为三边的三角形是直角三角形;若,时,以,,为三边的三角形是钝角三角形;若,时,以,,为三边的三角形是锐角三角形;②定理中,,及只是一种表现形式,不可认为是唯一的,如若三角形三边长,,满足,那么以,,为三边的三角形是直角三角形,但是为斜边;③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形.3.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即中,,,为正整数时,称,,为一组勾股数;②记住常见的勾股数可以提高解题速度,如;;;等;③用含字母的代数式表示组勾股数:(为正整数);(为正整数)(,为正整数)知识点三、勾股定理与勾股定理逆定理的区别与联系1.区别:勾股定理是直角三角形的性质定理,能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解;而其逆定理是判定定理,能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.2.联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.【典型例题】类型一、勾股定理及其逆定理的应用【高清课堂:勾股定理及其逆定理例2】1.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是__________.

【思路点拨】根据图形的特征得出线段之间的关系,进而利用勾股定理求出各边之间的关系,从而得出答案.【答案与解析】∵图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,

∴CG=NG,CF=DG=NF,

∴S1=(CG+DG)2=CG2+DG2+2CG•DG,=GF2+2CG•DG,

S2=GF2,

S3=(NG-NF)2=NG2+NF2-2NG•NF,

∵S1+S2+S3=10=GF2+2CG•DG+GF2+NG2+NF2-2NG•NF,=3GF2,

∴S2=.【总结升华】此题主要考查了勾股定理的应用,根据已知得出S1+S2+S3=10=GF2+2CG•DG+GF2+NG2+NF2-2NG•NF=3GF2是解决问题的关键.【变式】若△ABC三边a、b、c满足a+b+c+338=10a+24b+26c,△ABC是直角三角形吗?为什么?【答案】∵a+b+c+338=10a+24b+26c∴a+b+c+338-10a-24b-26c=0(a-10a+25)+(b-24b+144)+(c-26c+169)=0即∵∴a=5,b=12,c=13又∵a+b=c=169,∴△ABC是直角三角形.2.(2014秋•黄梅县校级期中)如图,AB=AC,AE=AF,∠BAC=∠EAF=90°,BE、CF交于M,连AM.(1)求证:BE=CF;(2)求证:BE⊥CF;(3)求∠AMC的度数.【思路点拨】(1)求出∠BAE=∠CAF,根据SAS推出△CAF≌△BAE即可;(2)根据全等得出∠ABE=∠ACF,求出∠ABO+∠BOA=∠COM+∠ACF=90°,求出∠CMO=90°即可;(3)作AG⊥BE于G,AH⊥CF于H,证全等得出AG=AH,得出正方形,求出∠AMG,即可求出答案.【答案与解析】证明:(1)∵∠BAC=∠EAF=90°,∴∠BAC+∠CAE=∠FAE+∠CAE,∴∠BAE=∠CAF,在△CAF和△BAE中∴△CAF≌△BAE,∴BE=CF.(2)证明:∵△CAF≌△BAE,∴∠ABE=∠ACF,∵∠BAC=90°,∴∠ABO+∠BOA=90°,∵∠BOA=∠COM,∴∠COM+∠ACF=90°,∴∠CMO=180°﹣90°=90°,∴BE⊥CF.(3)解:过点A分别作AG⊥BE于G,AH⊥CF于H,则∠AGB=∠AHC=90°,在△AGB和△AHC中∴△AGB≌△AHC,∴AG=AH,∵AG⊥BE,AH⊥FC,BE⊥CF,∴∠AGM=∠GMH=∠AHM=90°,∴四边形AHMG是正方形,∴∠GMH=90°,∠AMG=∠HMG=45°,∴∠AMC=90°+45°=135°.【总结升华】本题考查了全等三角形的性质和判定,正方形的性质和判定的应用,主要考查学生的推理能力.举一反三:【变式】如图,△ABC中,有一点P在AC上移动.若AB=AC=5,BC=6,则AP+BP+CP的最小值为()A.8B.8.8C.9.8D.10【答案】C.类型二、勾股定理及其逆定理与其他知识的结合应用【高清课堂:勾股定理及其逆定理例7】3.(2015春•沛县期中)(1)如图①,正方形ABCD①中,点E、F分别在边BC、CD上,∠EAF=45°,延长CD到点C,使DG=BE,连结EF、AG,求证:EF=FG;(2)如图②,在△ABC中,∠BAC=90°,点M、N在边BC上,且∠MAN=45°,若BM=1,AB=AC,CN=3,求MN的长.【思路点拨】(1)欲证明EF=FG,只需证得△FAE≌△GAF,利用该全等三角形的对应边相等证得结论;(2)过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.通过证明△ABM≌△ACE(SAS)推知全等三角形的对应边AM=AE、对应角∠BAM=∠CAE;然后由等腰直角三角形的性质和∠MAN=45°得到∠MAN=∠EAN=45°,所以△MAN≌△EAN(SAS),故全等三角形的对应边MN=EN;最后由勾股定理得到EN2=EC2+NC2即MN2=BM2+NC2.【答案与解析】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,∵在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=.【总结升华】本题考查了全等三角形的判定和性质、勾股定理的运用、等腰直角三角形的性质,题目的综合性较强,解题的关键是正确的作出辅助线构造全等三角形.4.(2011黑龙江大庆)如图,ABCD是一张边AB长为2,边AD长为1的矩形纸片,沿过点B的折痕将A角翻折,使得点A落在边CD上的点A′处,折痕交边AD于点E.(1)求∠DA′E的大小;(2)求△A′BE的面积.【思路点拨】(1)先根据图形翻折变换的性质得出Rt△ABE≌Rt△A′BE,再根据直角三角形的性质可得出∠DA′E的度数;(2)设AE=x,则ED=1﹣x,A′E=x,在Rt△A′DE中,利用sin∠DA′E=可求出x的值,在根据Rt△A′BE中,A′B=AB,利用三角形的面积公式即可求解.【答案与解析】(1)∵△A′BE是△ABE翻折而成,∴Rt△ABE≌Rt△A′BE,∴在Rt△A′BC中,A′B=2,BC=1得,∠BA′C=30°,又∵∠BA′E=90°,∴∠DA′E=60°;(2)解法1:设AE=x,则ED=1-x,A′E=x,在Rt△A′DE中,sin∠DA′E=,即=,得x=4-2,在Rt△A′BE中,A′E=4﹣2,A′B=AB=2,∴S△A′BE=×2×(4﹣2)=4-2;解法2:在Rt△A′BC中,A′B=2,BC=1,得A′C=,∴A′D=2-,设AE=x,则ED=1-x,A′E=x,在Rt△A′DE中,A′D2+DE2=A′E2,即(2-)2+(1﹣x)2=x2,得x=4-2,在Rt△A′BE中,A′E=4-2,A′B=AB=2,∴S△A′BE=×2×(4-2)=4-2.【总结升华】本题考查的是图形的翻折变换,涉及到勾股定理及矩形的性质,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.举一反三:【变式】如图,在△ABC中,已知∠C=90°,AC=60cm,AB=100cm,a,b,c…是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC上或与BC平行.若各矩形在AC上的边长相等,矩形a的一边长是72cm,则这样的矩形a、b、c…的个数是()A.6B.7C.8D.9

【答案】D.5.如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m。假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?

【思路点拨】(1)要判断拖拉机的噪音是否影响学校A,实质上是看A到公路的距离是否小于100m,小于100m则受影响,大于100m则不受影响,故作垂线段AB并计算其长度.(2)要求出学校受影响的时间,实质是要求拖拉机对学校A的影响过程中所行驶的路程.因此必须找到拖拉机行至哪一点开始影响学校,行至哪一点后结束影响学校.

【答案与解析】作AB⊥MN,垂足为B

在RtΔABP中,∵∠ABP=90°,∠APB=30°,AP=160,

∴AB=AP=80(直角三角形中,30°所对的直角边等于斜边的一半)

∵点A到直线MN的距离小于100m,

∴这所中学会受到噪声的影响.

如图,假设拖拉机在公路MN上沿PN方向行驶到点C处时学校开始受到影响,那么AC=100(m),

由勾股定理得:BC2=1002-802=3600,∴BC=60m

同理,假设拖拉机行驶到点D处时学校开始不受影响,那么AD=100(m),BD=60(m),

∴CD=120(m).

∵拖拉机行驶的速度为:18km/h=5m/s

∴t=120m÷5m/s=24s

答:拖拉机在公路MN上沿PN方向行驶时,学校会受到噪声影响,学校受影响的时间为24秒.

【总结升华】勾股定理是求线段长度的很重要的方法,若图形缺少直角条件,则可以通过作垂线的方法,构造直角三角形,以便利用勾股定理.6.如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PWQ.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题:

(1)说明△FMN∽△QWP;

(2)设0≤x≤4(即M从D到A运动的时间段).试问x为何值时,△PWQ为直角三角形?当x在何范围时,△PQW不为直角三角形?

(3)问当x为何值时,线段MN最短?求此时MN的值.【思路点拨】解决图形运动的问题,由于运动过程中图形的位置或形状不确定,常会用到分类思想.【答案与解析】(1)由题意可知P、W、Q分别是ΔFMN三边的中点,∴PW是ΔFMN的中位线,即PW∥MN∴ΔFMN∽ΔQWP(2)由题意可得DM=BN=x,AN=6-x,AM=4-x,由勾股定理分别得=,=+=+①当=+时,+=++解得;②当=+时,+=++此方程无实数根;③=+时,=+++解得(不合题意,舍去),;综上,当或时,ΔPQW为直角三角形;当0≤x<或<x<4时,ΔPQW不为直角三角形.(3)①当0≤x≤4,即M从D到A运动时,只有当x=4时,MN的值最小,等于2;②当4<x≤6时,=+=+=当x=5时,取得最小值2,∴当x=5时,线段MN最短,MN=.【总结升华】题涉及到相似三角形的判定与性质,二次函数的最值,勾股定理的逆定理,三角形中位线定理等知识点的理解和掌握,难度较大,综合性较强,利于学生系统地掌握所学知识.举一反三:【变式】在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.

问题1:以直角三角形的三边为边向形外作等边三角形,探究S1+S2与S3的关系(如图1).

问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图2).

问题3:以直角三角形的三边为直径向形外作半圆,探究S1+S2与S3的关系(如图3).【答案】问题1:由等边三角形的性质知:S1=a2,S2=b2,S3=c2,

则S1+S2=(a2+b2),因为a2+b2=c2,所以S1+S2=S3.

问题2:由等腰直角三角形的性质知:S′=a2,S″=b2,S=c2.

则S′+S″=(a2+b2),因为a2+b2=c2,所以S′+S″=S.

问题3:由圆的面积计算公式知:S1=πa2,S2=πb2,S3=πc2.

则S1+S2=π(a2+b2),因此a2+b2=c2,所以S1+S2=S3.中考总复习:函数综合—巩固练习(基础)【巩固练习】一、选择题

1.(2015•武汉模拟)二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是() A.k<3 B. k<3且k≠0 C. k≤3 D. k≤3且k≠02.如图,直线和双曲线(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别是C、D、E,连接OA、OB、OP,设△AOC面积是S1、△BOD面积是S2、△POE面积是S3、则()A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S33.小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图象是()4.已知一次函数的图象如图所示,那么a的取值范围是()A.a>1B.a<1C.a>0D.a<05.下列函数中,当x>0时,y值随x值增大而减小的是()A.y=x2B.y=x-1C.y=xD.y=6.在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是()A.y=-(x+1)2+2B.y=-(x-1)2+4C.y=-(x-1)2+2D.y=-(x+1)2+4二、填空题7.(2016•贵阳模拟)如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为.8.在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示,P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是________米.9.已知近视眼镜的度数y(度)与镜片焦距x(m)成反比例关系,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为________.10.如图所示,点A是双曲线在第二象限的分支上的任意一点,点B,C,D分别是A关于x轴、原点、y轴的对称点,则四边形ABCD的面积是________.第8题第10题第11题11.如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再经过A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A5的坐标为(________,________).12.已知二次函数(a为常数),当a取不同的值时,其图象构成一个“抛物线系”,下图分别是当a=-1,a=0,a=1,a=2时二次函数的图象,它们的顶点在一条直线上,这条直线的解析式是y=_______.三、解答题13.直线交反比例函数的图象于点A,交x轴于点B,点A,B与坐标原点O构成等边三角形,求直线的函数解析式.14.(2014•温州)如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNF的面积之比.15.已知如图所示,在平面直角坐标系中,点A在第一象限,点B的坐标为(3,0),OA=2,∠AOB=60°.(1)求点A的坐标;(2)若直线AB交y轴于点C,求△AOC的面积.16.如图所示,等腰三角形ABC以2米/秒的速度沿直线向正方形移动,直到AB与CD重合.设x秒时,三角形与正方形重叠部分的面积为y平方米.(1)写出y与x的关系式;(2)当x=2,3.5时,y分别是多少?(3)当重叠部分的面积是正方形面积的一半时,三角形移动了多长时间?【答案与解析】一、选择题

1.【答案】D;【解析】∵二次函数y=kx2﹣6x+3的图象与x轴有交点,∴方程kx2﹣6x+3=0(k≠0)有实数根,即△=36﹣12k≥0,k≤3,由于是二次函数,故k≠0,则k的取值范围是k≤3且k≠0.故选D.2.【答案】D;【解析】S1=S△AOC=k,S2=S△BOD=k,S3=S△POE>k.所以S1=S2<S3.3.【答案】C;【解析】散步时用时较长,而跑步用时较短,打一会太极拳说明这一时间段离家的距离不变,因而只有C选项符合.4.【答案】A;【解析】由图象可知k>0,即a-1>0,所以a>1.5.【答案】D;【解析】y=分布第一、三象限,当x>0时,y随x的增大而减小.6.【答案】B;【解析】抛物线y=x2+2x+3的顶点为(-1,2),与y轴交于点(0,3),开口向上;旋转后其顶点为(1,4),开口向下.所以y=-(x-1)2+4.二、填空题7.【答案】3;【解析】设P(0,b),∵直线AB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=﹣的图象上,∴当y=b,x=﹣,即A点坐标为(﹣,b),又∵点B在反比例函数y=的图象上,∴当y=b,x=,即B点坐标为(,b),∴AB=﹣(﹣)=,∴S△ABC=•AB•OP=••b=3.故答案为:3.8.【答案】0.5;【解析】首先求出反比例函数的表达式,可由图中点的坐标(5,1)求出函数式中的待定系数k,然后利用反比例函数表达式即可得解.9.【答案】;【解析】由于y与x成反比例,则,当y=400时,x=0.25,所以k=400×0.25=100,焦距不能为负值.故.10.【答案】4;【解析】由题意得AD=2|x|,AB=,四边形ABCD是矩形,∴.11.【答案】(16,0);【解析】当x=1时,,所以B1(1,),OB1=,所以A2(2,0),当x=2时,y=,所以B2(2,,OB2=4,所以A3(4,0),依次类推A4(8,0),A5(16,0).12.【答案】.【解析】当a=0时,抛物线的顶点坐标是(0,-1),当a=1时,它的顶点坐标是(2,0),设该直线解析式为y=kx+b.则∴∴这条直线的解析式是.三、解答题13.【答案与解析】由题意可知直线与反比例函数的图象相切设A点的横坐标为m,则由等边三角形△OAB得,纵坐标为,即A(m,),因为点A在反比例函数的图象上,所以m×=,,A(1,)或(-1,-),则OB=OA=2m,所以B(2,0)、或B(-2,0),直线过A(1,)、B(2,0)的解析式为;直线过A(-1,-)、B(-2,0)的解析式为.14.【答案与解析】解:(1)由题意可得:﹣(﹣1)2+2×(﹣1)+c=0,解得:c=3,∴y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M(1,4);(2)∵A(﹣1,0),抛物线的对称轴为直线x=1,∴点B(3,0),∴EM=1,BN=2,∵EM∥BN,∴△EMF∽△BNF,∴=()2=()2=.15.【答案与解析】解;(1)如图所示,过点A作AD⊥x轴,垂足为D.则OD=OAcos60°=2×=1,(2)设直线AB的解析式为.令x=0,得,∴.∴.16.【答案与解析】解:(1)如图所示,设当△ABC移动x秒时,到达如图位置,则△ECM的面积为y.CE=2x,ME=2x,所以y=2x2(x≥0).(2)当x=2时,y=2×4=8,当x=3.5时,y=2×(3.5)2=24.5.(3)正方形面积为100,当y=50时,2x2=50,x=5.即三角形移动5秒时,重叠部分面积等于正方形面积的一半.中考总复习:函数综合—巩固练习(提高)【巩固练习】一、选择题

1.函数中自变量x的取值范围是()A.x≥-3B.x≥-3且x≠1C.x≠1D.x≠-3且x≠12.如图为抛物线y=ax2+bx+c的图象,A、B、C为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是()A.a+b=-1B.a-b=-1C.b<2aD.ac<03.设一元二次方程(x-1)(x-2)=m(m>0)的两实根分别为α、β,则α、β满足()A.1<α<β<2B.1<α<2<βC.α<1<β<2D.α<1且β>24.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路线为x,以点A、P、D为顶点的三角形的面积是y.则下列图象能大致反映y与x的函数关系的是()ABCD5.(2015•眉山)如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为() A. B. C. 3 D. 46.如图,一次函数y=-x+2的图象上有两点A、B,A点的横坐标为2,B点的横坐标为a(0<a<4且a≠2),过点A、B分别作x的垂线,垂足为C、D,△AOC、△BOD的面积分别为S1、S2,则S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.无法确定二、填空题7.抛物线的一部分如图所示,那么该抛物线在y轴右侧与x轴交点的坐标是________.8.在直角坐标系中,有如图所示的Rt△ABO,AB⊥x轴于点B,斜边AO=10,sin∠AOB=,反比例函数(k>0)的图象经过AO的中点C,且与AB交于点D,则点D的坐标为_______________.第7题第8题第9题9.如图,点A在双曲线上,AB⊥x轴于B,且△AOB的面积S△AOB=2,则k=______.10.(2015•贵港)如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),若0<y1<y2,则x的取值范围是.11.如图所示,直线OP经过点P(4,4),过x轴上的点1、3、5、7、9、11……分别作x轴的垂线,与直线OP相交得到一组梯形,其阴影部分梯形的面积从左至右依次记为S1、S2、S3……Sn则Sn关于n的函数关系式是________.第11题第12题12.在直角坐标系中,正方形A1B1C1O1、A2B2C2C1、A3B3C3C2、…、AnBnCnCn-1按如图所示的方式放置,其中点A1、A2、A3、…、An均在一次函数y=kx+b的图象上,点C1、C2、C3、…、Cn均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点An的坐标为____________.三、解答题13.已知,如图所示,正方形ABCD的边长为4cm,点P是BC边上不与点B、C重合的任意一点,连结AP,过点P作PQ⊥AP交DC于点Q,设BP的长为xcm,CQ的长为ycm.(1)求点P在BC上运动的过程中y的最大值;(2)当cm时,求x的值.14.(2015•黄石)大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1)直接写出y与x之间的函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元应如何控制销售价格?15.已知关于x的二次函数与,这两个二次函数的图象中的一条与x轴交于A、B两个不同的点.(1)试判断哪个二次函数的图象经过A、B两点;(2)若A点坐标为(-l,0),试求B点坐标;(3)在(2)的条件下,对于经过A、B两点的二次函数,当x取何值时,y的值随x值的增大而减小?16.探究(1)在下图中,已知线段AB,CD,其中点分别为E,F.①若A(-1,0),B(3,0),则E点坐标为________;②若C(-2,2),D(-2,-1),则F点坐标为________;(2)在下图中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程.归纳无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,x=________,y=_______.(不必证明)运用在下图中,一次函数y=x-2与反比例函数的图象交点为A,B.①求出交点A,B的坐标;②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标.【答案与解析】一、选择题

1.【答案】B;【解析】由x+3≥0且x-1≠0,得x≥-3且x≠1.2.【答案】B;【解析】由OA=OC=1,得A(-1,0),C(0,1),所以则a-b=-1.3.【答案】D;【解析】当y=(x-1)(x-2)时,抛物线与x轴交点的横坐标为1,2,抛物线与直线y=m(m>0)交点的横坐标为α,β,可知α<1,β>2.4.【答案】B;【解析】当点P在AD上时,S△APD=0;当点P在DC上时,S△APD=×4×(x-4)=2x-8;当点P在CB上时,S△APD=×4×4=8;当点P在BA上时,S△APD=×4×(16-x)=-2x+32.故选B.5.【答案】B;【解析】过点B作BE⊥x轴于点E,∵D为OB的中点,∴CD是△OBE的中位线,即CD=BE.设A(x,),则B(2x,),CD=,AD=﹣,∵△ADO的面积为1,∴AD•OC=1,(﹣)•x=1,解得y=,∴k=x•=y=.故选B.6.【答案】A;【解析】当x=2时,y=-x+2=1,A(2,1),S1=S△AOC=×2×1=1;当x=a时,y=-x+2=-a+2,B(a,-a+2),S2=S△BOD=×a×=-a2+a=-(a-2)2+1,当a=2时,S2有最大值1,当a≠2时,S2<1.所以S1>S2.二、填空题7.【答案】(1,0);【解析】的对称轴,由二次函数的对称性知,抛物线与x轴两交点关于对称轴对称,所以,所以设另一交点坐标为(x1,0),则,解得x1=1,故坐标为(1,0).8.【答案】;【解析】在Rt△AOB中,AO=10.sin∠AOB=,则AB=6,OB=8.又点C是AC中点,得C(4,3),k=4×3=12,.当x=8时,.∴D坐标为.9.【答案】-4;【解析】设A(x,y).S△AOB=OB·AB=·|x|·|y|=x·(-y)==2.所以xy=-4,即k=-4.10.【答案】2<x<3;【解析】∵二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),∴由图象得:若0<y1<y2,则x的取值范围是:2<x<3.11.【答案】(8n-4);【解析】设直线OP的解析式为y=kx,由P(4,4),得4=4k,k=,∴y=x.则S1=×(3-1)×(+3)=4,S2=×(7-5)×(5+7)=12,S3=×(11-9)×(9+11)=20,……,所以Sn=4(2n-1)=(8n-4).12.【答案】(2n-1-1,2n-1);【解析】可求得A1(0,1),A2(1,2),A3(3,4),A4(7,8),…,其横坐标0,1,3,7…的规律为2n-1-1,纵坐标1,2,4,8…的规律为2n-1,所以点An的坐标为(2n-1-1,2n-1).三、解答题13.【答案与解析】解:(1)∵PQ⊥AP,∴∠CPQ+∠APB=90°.又∵∠BAP+∠APB=90°,∴∠CPQ=∠BAP,∴tan∠CPQ=tan∠BAP,因此点P在BC上运动时始终有.∵AB=BC=4,BP=x,CQ=y,∴,∴.∵,∴y有最大值,当x=2时,(cm).(2)由(1)知,当y=cm时,,整理,得.∵,∴.x的值是cm或cm.14.【答案与解析】解:(1)由题意可得:y=;(2)由题意可得:w=,化简得:w=,即w=,由题意可知x应取整数,故当x=﹣2或x=﹣3时,w<6125<6250,故当销售价格为65元时,利润最大,最大利润为6250元;(3)由题意w≥6000,如图,令w=6000,即6000=﹣10(x﹣5)2+6250,6000=﹣20(x+)2+6125,解得:x1=﹣5,x2=0,x3=10,﹣5≤x≤10,故将销售价格控制在55元到70元之间(含55元和70元)才能使每月利润不少于6000元.15.【答案与解析】解:(1)对于关于x的二次函数,由于△=(-m)2-4×1×,所以此函数的图象与x轴没有交点.对于关于x的二次函数.由于,所以此函数的图象与x轴有两个不同的交点.故图象经过A,B两点的二次函数为.(2)将A(-1,0)代入,得.整理,得m2-2=0.解之,得m=0,或m=2.当m=0时,y=x2-1.令y=0,得x2-1=0.解这个方程,得x1=-1,x2=1.此时,B点的坐标是B(1,0).当m=2时,.令y=0,得.解这个方程,得x1=-1,x2=3.此时,B点的坐标是B(3,0).(3)当m=0时,二次函数为y=x2-l,此函数的图象开口向上,对称轴为x=0,所以当x<0时,函数值y随x的增大而减小.当m=2时,二次函数为y=x2-2x-3=(x-1)2-4,此函数的图象开口向上,对称轴为x=l,所以当x<l时,函数值y随x的增大而减小.16.【答案与解析】解:探究(1)①(1,0);②.(2)过点A,D,B三点分别作x轴的垂线,垂足分别为A′,D′,B′,则AA′∥BB′∥DD′.∵D为AB中点,由平行线分线段成比例定理得A′D′=D′B′.∴OD′=,即D点的横坐标是.同理可得D点的纵坐标是,∴AB中点D的坐标为,归纳,,运用①由题意得解得,或∴即交点的坐标为A(-1,-3),B(3,1).②以AB为对角线时,由上面的结论知AB中点M的坐标为(1,-1),∵平行四边形对角线互相平分,∴OM=MP,即M为OP的中点,∴P点坐标为(2,-2),同理可得分别以OA,OB为对角线时,点P坐标分别为(4,4),(-4,-4),∴满足条件的点P有三个,坐标分别是(2,-2),(4,4),(-4,-4).中考总复习:函数综合—知识讲解(基础)【考纲要求】1.平面直角坐标系的有关知识平面直角坐标系中各象限和坐标轴上的点的坐标的特征,求点关于坐标轴、坐标原点的对称点的坐标,求线段的长度,几何图形的面积,求某些点的坐标等;2.函数的有关概念求函数自变量的取值范围,求函数值、函数的图象、函数的表示方法;3.函数的图象和性质常见的题目是确定图象的位置,利用函数的图象确定某些字母的取值,利用函数的性质解决某些问题.利用数形结合思想来说明函数值的变化趋势,又能反过来判定函数图象的位置;4.函数的解析式求函数的解析式,求抛物线的顶点坐标、对称轴方程,利用函数的解析式来求某些字母或代数式的值.一次函数、反比例函数和二次函数常与一元一次方程、一元二次方程、三角形的面积、边角关系、圆的切线、圆的有关线段组成综合题.【知识网络】【考点梳理】考点一、平面直角坐标系1.相关概念(1)平面直角坐标系(2)象限(3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标(1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标(3)平行于坐标轴的直线上的点的坐标(4)关于x轴、y轴、原点对称的点的坐标4.距离(1)平面上一点到x轴、y轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离(3)平面上任意两点间的距离5.坐标方法的简单应用(1)利用坐标表示地理位置(2)利用坐标表示平移要点诠释:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于;(2)点P(x,y)到y轴的距离等于;(3)点P(x,y)到原点的距离等于.考点二、函数及其图象1.变量与常量2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象要点诠释:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.考点三、一次函数1.正比例函数的意义2.一次函数的意义3.正比例函数与一次函数的性质4.一次函数的图象与二元一次方程组的关系5.利用一次函数解决实际问题要点诠释:确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k;确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b.解这类问题的一般方法是待定系数法.考点四、反比例函数1.反比例函数的概念2.反比例函数的图象及性质3.利用反比例函数解决实际问题要点诠释:反比例函数中反比例系数的几何意义,如下图,过反比例函数图像上任一点作x轴、y轴的垂线PM,PN,垂足为M、N,则所得的矩形PMON的面积S=PMPN=.∴.考点五、二次函数1.二次函数的概念2.二次函数的图象及性质3.二次函数与一元二次方程的关系4.利用二次函数解决实际问题要点诠释:1、两点间距离公式(当遇到没有思路的问题时,可用此方法拓展思路,以寻求解题方法)如图:点A坐标为(x1,y1),点B坐标为(x2,y2),则AB间的距离,即线段AB的长度为.2、函数平移规律:左加右减、上加下减.考点六、函数的应用1.一次函数的实际应用2.反比例函数的实际应用3.二次函数的实际应用要点诠释:分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论.在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型.【典型例题】类型一、用函数的概念与性质解题 1.已知一次函数y=(3a-2)x+(1-b),求字母a,b的取值范围,使得:

(1)y随x的增大而增大;

(2)函数图象与y轴的交点在x轴的下方;

(3)函数的图象过第一、二、四象限.【思路点拨】(1)y=kx+b(k≠0)的图象,当k>0时,y随x的增大而增大;(2)当b<0时,函数图象与y轴的交点在x轴的下方;(3)当k<0,b>0时时,函数的图象过第一、二、四象限.【答案与解析】解:a、b的取值范围应分别满足:(1)由一次函数y=kx+b(k≠0)的性质可知:当k>0时,函数值y随x的增大而增大,即3a-2>0,∴,且b取任何实数.(2)函数图象与y轴的交点为(0,1-b),∵交点在x轴的下方,∴,即a≠,b>1.

(3)函数图象过第一、二、四象限,则必须满足.

【总结升华】下面是y=kx(k≠0),y=kx+b(k≠0)的图象的特点和性质的示意图,如图1,当k>0时,y随x的增大而增大;当b>0时,图象过一、二、三象限,当b=0时,是正比例函数,当b<0时,图象过一、三、四象限;当y=x时,图象过一、三象限,且是它的角平分线.由于常数k、b不同,可得到不同的函数,k决定直线与x轴夹角的大小,b决定直线与y轴交点的位置,由k定向,由b定点.同样,如图2,是k<0的各种情况,请你指出它们的图象的特点和性质.举一反三:【变式】作出函数y=x,,的图象,它们是不是同一个函数?

【答案】函数的自变量x的取值范围是x≥0;函数在x≠0时,就是函数y=x;而x=0不在函数的自变量x的取值范围之内.由此,作图如下:

可见它们不是同一个函数.

类型二、函数图象及性质2.已知:

(1)m为何值时,它是一次函数.

(2)当它是一次函数时,画出草图,指出它的图象经过哪几个象限?y是随x的增大而增大还是减小?

(3)当图象不过原点时,求出该图象与坐标轴交点间的距离,及图象与两轴所围成的三角形面积.【思路点拨】一次函数应满足:一次项(或自变量)的指数为1,系数不为0.【答案与解析】(1)依题意:,解得m=1或m=4.

∴当m=1或m=4时,它是一次函数.

(2)当m=4时,函数为y=2x,是正比例函数,图象过一,三象限,

y随x的增大而增大.

当m=1时,函数为y=-x-3,直线过二,三,四象限,y随x的增大而减小.

(3)直线y=-x-3不过原点,它与x轴交点为A(-3,0),

与y轴交点为B(0,-3),.

.

∴直线y=-x-3与两轴交点间的距离为,与两轴围成的三角形面积为.

【总结升华】

(1)某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0.

(2)判断函数的增减性,关键是确定直线y=kx+b(k≠0)中k、b的符号.

(3)直线y=kx+b(k≠0)与两轴的交点坐标可运用x轴、y轴上的点的特征来求,当直线y=kx+b(k≠0)上的点在x轴上时,令y=0,则,交点为;当直线y=kx+b(k≠0)上的点在y轴上时,令x=0,则y=b,即交点为(0,b).举一反三:【高清课程名称:函数综合1高清ID号:\o"查看资源信息"369111关联的位置名称(播放点名称):经典例题2】【变式】已知关于的方程.(1)求证:方程总有两个实数根;(2)若方程有一个根大于4且小于8,求m的取值范围;(3)设抛物线与轴交于点M,若抛物线与x轴的一个交点关于直线的对称点恰好是点M,求的值.【答案】证明:(1),所以方程总有两个实数根. 解:(2)由(1),根据求根公式可知,方程的两根为:即,,由题意,有,即. (3)易知,抛物线与y轴交点为M(0,),由(2)可知抛物线与x轴的交点为(1,0)和(,0),它们关于直线的对称点分别为(0,)和(0,),由题意,可得或,所以或. 3.抛物线y=x2+bx+c图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣2x﹣3,则b、c的值为() A.b=2,c=2 B.b=2,c=0 C.b=﹣2,c=﹣1 D.b=﹣3,c=2【思路点拨】易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式,展开即可得到b,c的值.【答案】B.【解析】解:由题意得新抛物线的顶点为(1,﹣4),∴原抛物线的顶点为(﹣1,﹣1),设原抛物线的解析式为y=(x﹣h)2+k代入得:y=(x+1)2﹣1=x2+2x,∴b=2,c=0.故选B.【总结升华】抛物线的平移不改变二次项系数的值;讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.4.若一次函数y=kx+1的图象与反比例函数的图象没有公共点,则实数k的取值范围是.【思路点拨】因为反比例函数的图象在第一、三象限,故一次函数y=kx+1中,k<0,将解方程组转化成关于x的一元二次方程,当两函数图象没有公共点时,只需△<0即可.【答案】.【解析】由反比例函数的性质可知,的图象在第一、三象限,

∴当一次函数y=kx+1与反比例函数图象无交点时,k<0,

解方程组,得kx2+x-1=0,

当两函数图象没有公共点时,△<0,即1+4k<0,

解得,

∴两函数图象无公共点时,.

故答案为:.【总结升华】本题考查了反比例函数与一次函数的交点问题.关键是转化成关于x的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论