贵州省铜仁松桃县联考2024届中考数学最后冲刺卷含解析_第1页
贵州省铜仁松桃县联考2024届中考数学最后冲刺卷含解析_第2页
贵州省铜仁松桃县联考2024届中考数学最后冲刺卷含解析_第3页
贵州省铜仁松桃县联考2024届中考数学最后冲刺卷含解析_第4页
贵州省铜仁松桃县联考2024届中考数学最后冲刺卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省铜仁松桃县联考2024届中考数学最后冲刺浓缩精华卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()A.① B.③ C.②或④ D.①或③2.如图,⊙O的直径AB垂直于弦CD,垂足为E.若,AC=3,则CD的长为A.6 B. C. D.33.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1) B.(﹣8,4)C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)4.如图,△ABC的面积为12,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C处,P为直线AD上的一点,则线段BP的长可能是()A.3 B.5 C.6 D.105.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)6.某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是()A.B.C.D.7.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2π B.4π C.5π D.6π8.如果关于x的分式方程有负分数解,且关于x的不等式组的解集为x<-2,那么符合条件的所有整数a的积是()A.-3 B.0 C.3 D.99.如图是由4个相同的正方体搭成的几何体,则其俯视图是()A. B. C. D.10.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为()A.﹣10= B.+10=C.﹣10= D.+10=二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:﹣22÷(﹣)=_____.12.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等”这一推论,如图所示,若SEBMF=1,则SFGDN=_____.13.如图,已知CD是Rt△ABC的斜边上的高,其中AD=9cm,BD=4cm,那么CD等于_______cm.14.如图,是用火柴棒拼成的图形,则第n个图形需_____根火柴棒.15.分解因式:.16.如果正比例函数y=(k-2)x的函数值y随x的增大而减小,且它的图象与反比例函数y=的图象没有公共点,那么k的取值范围是______.三、解答题(共8题,共72分)17.(8分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x(元),每日销售量y(件)每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:(元)19202130(件)62605840(1)根据表中数据的规律,分别写出毎日销售量y(件),每日的利润w(元)关于销售单价x(元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?18.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?19.(8分)计算:(π﹣3.14)0+|﹣1|﹣2sin45°+(﹣1)1.20.(8分)如图,一次函数的图象与反比例函数的图象交于,B

两点.(1)求一次函数与反比例函数的解析式;(2)结合图形,直接写出一次函数大于反比例函数时自变量x的取值范围.21.(8分)(11分)阅读资料:如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x1,y1),由勾股定理得AB1=|x1﹣x1|1+|y1﹣y1|1,所以A,B两点间的距离为AB=.我们知道,圆可以看成到圆心距离等于半径的点的集合,如图1,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA1=|x﹣0|1+|y﹣0|1,当⊙O的半径为r时,⊙O的方程可写为:x1+y1=r1.问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为.综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.①证明AB是⊙P的切点;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙O的方程;若不存在,说明理由.22.(10分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.23.(12分)解不等式组,并把解集在数轴上表示出来.24.先化简,再求值:,其中x=.

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】

分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.【详解】分两种情况讨论:①当点P顺时针旋转时,BP的长从增加到2,再降到0,再增加到,图象③符合;②当点P逆时针旋转时,BP的长从降到0,再增加到2,再降到,图象①符合.故答案为①或③.故选D.【点睛】本题考查了动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.2、D【解析】

解:因为AB是⊙O的直径,所以∠ACB=90°,又⊙O的直径AB垂直于弦CD,,所以在Rt△AEC中,∠A=30°,又AC=3,所以CE=AB=,所以CD=2CE=3,故选D.【点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.3、D【解析】

根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.【详解】∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是:(-2,1)或(2,-1).故选D.【点睛】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.4、D【解析】

过B作BN⊥AC于N,BM⊥AD于M,根据折叠得出∠C′AB=∠CAB,根据角平分线性质得出BN=BM,根据三角形的面积求出BN,即可得出点B到AD的最短距离是8,得出选项即可.【详解】解:如图:

过B作BN⊥AC于N,BM⊥AD于M,

∵将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,

∴∠C′AB=∠CAB,

∴BN=BM,

∵△ABC的面积等于12,边AC=3,

∴×AC×BN=12,

∴BN=8,

∴BM=8,

即点B到AD的最短距离是8,

∴BP的长不小于8,

即只有选项D符合,

故选D.【点睛】本题考查的知识点是折叠的性质,三角形的面积,角平分线性质的应用,解题关键是求出B到AD的最短距离,注意:角平分线上的点到角的两边的距离相等.5、A【解析】

作AD⊥y轴于D,作CE⊥y轴于E,则∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性质得出OC=AO,∠1+∠3=90°,证出∠3=∠1,由AAS证明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出结果.【详解】解:作AD⊥y轴于D,作CE⊥y轴于E,如图所示:则∠ADO=∠OEC=90°,∴∠1+∠1=90°.∵AO=1,AD=1,∴OD=,∴点A的坐标为(1,),∴AD=1,OD=.∵四边形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴点C的坐标为(,﹣1).故选A.【点睛】本题考查了正方形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等得出对应边相等是解决问题的关键.6、B【解析】从几何体的正面看可得下图,故选B.7、B【解析】

连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【详解】连接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,则劣弧AC的长为:=4π.故选B.【点睛】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式.8、D【解析】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合题意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合题意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合题意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合题意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合题意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合题意;把a=3代入整式方程得:﹣3x=1﹣x,即,符合题意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合题意,∴符合条件的整数a取值为﹣3;﹣1;1;3,之积为1.故选D.9、A【解析】试题分析:从上面看是一行3个正方形.故选A考点:三视图10、B【解析】

根据题意表示出衬衫的价格,利用进价的变化得出等式即可.【详解】解:设第一批购进x件衬衫,则所列方程为:+10=.故选B.【点睛】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】解:原式==1.故答案为1.12、1【解析】

根据从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等得SEBMF=SFGDN,得SFGDN.【详解】∵SEBMF=SFGDN,SEBMF=1,∴SFGDN=1.【点睛】本题考查面积的求解,解题的关键是读懂题意.13、1【解析】

利用△ACD∽△CBD,对应线段成比例就可以求出.【详解】∵CD⊥AB,∠ACB=90°,∴△ACD∽△CBD,∴,∴,∴CD=1.【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键.14、2n+1.【解析】

解:根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;……由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.故答案为:2n+1.15、【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.16、【解析】

先根据正比例函数y=(k-1)x的函数值y随x的增大而减小,可知k-1<0;再根据它的图象与反比例函数y=的图象没有公共点,说明反比例函数y=的图象经过一、三象限,k>0,从而可以求出k的取值范围.【详解】∵y=(k-1)x的函数值y随x的增大而减小,

∴k-1<0

∴k<1

而y=(k-1)x的图象与反比例函数y=的图象没有公共点,

∴k>0

综合以上可知:0<k<1.

故答案为0<k<1.【点睛】本题考查的是一次函数与反比例函数的相关性质,清楚掌握函数中的k的意义是解决本题的关键.三、解答题(共8题,共72分)17、(1)y=﹣2x+100,w=﹣2x2+136x﹣1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这种纪念花灯每日的最低制造成本需要648元.【解析】

(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.列方程组得到y关于x的函数表达式y=﹣2x+100,根据题意得到w=﹣2x2+136x﹣1800;(2)把w=﹣2x2+136x﹣1800配方得到w=﹣2(x﹣34)2+1.根据二次函数的性质即可得到结论;(3)根据题意列方程即可得到即可.【详解】解:(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.则,解得,∴y=﹣2x+100,∴y关于x的函数表达式y=﹣2x+100,∴w=(x﹣18)•y=(x﹣18)(﹣2x+100)∴w=﹣2x2+136x﹣1800;(2)∵w=﹣2x2+136x﹣1800=﹣2(x﹣34)2+1.∴当销售单价为34元时,∴每日能获得最大利润1元;(3)当w=350时,350=﹣2x2+136x﹣1800,解得x=25或43,由题意可得25≤x≤32,则当x=32时,18(﹣2x+100)=648,∴制造这种纪念花灯每日的最低制造成本需要648元.【点睛】此题主要考查了二次函数的应用,根据已知得出函数关系式.18、羊圈的边长AB,BC分别是20米、20米.【解析】试题分析:设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.试题解析:设AB的长度为x米,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得x1=20,x2=1.则100﹣4x=20或100﹣4x=2.∵2>21,∴x2=1舍去.即AB=20,BC=20考点:一元二次方程的应用.19、【解析】

直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质化简,进而求出答案.【详解】原式.【点睛】考核知识点:三角函数混合运算.正确计算是关键.20、(1);;(2)或;【解析】

(1)利用点A的坐标可求出反比例函数解析式,再把B(4,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数时自变量x的取值范围.【详解】(1)

过点,,反比例函数的解析式为;点在

上,,

,一次函数过点,

,解得:.一次函数解析式为;(2)由图可知,当或时,一次函数值大于反比例函数值.【点睛】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式.21、问题拓展:(x﹣a)1+(y﹣b)1=r1综合应用:①见解析②点Q的坐标为(4,3),方程为(x﹣4)1+(y﹣3)1=15.【解析】试题分析:问题拓展:设A(x,y)为⊙P上任意一点,则有AP=r,根据阅读材料中的两点之间距离公式即可求出⊙P的方程;综合应用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,从而可证到△POB≌△PAB,则有∠POB=∠PAB.由⊙P与x轴相切于原点O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切线;②当点Q在线段BP中点时,根据直角三角形斜边上的中线等于斜边的一半可得QO=QP=BQ=AQ.易证∠OBP=∠POA,则有tan∠OBP==.由P点坐标可求出OP、OB.过点Q作QH⊥OB于H,易证△BHQ∽△BOP,根据相似三角形的性质可求出QH、BH,进而求出OH,就可得到点Q的坐标,然后运用问题拓展中的结论就可解决问题.试题解析:解:问题拓展:设A(x,y)为⊙P上任意一点,∵P(a,b),半径为r,∴AP1=(x﹣a)1+(y﹣b)1=r1.故答案为(x﹣a)1+(y﹣b)1=r1;综合应用:①∵PO=PA,PD⊥OA,∴∠OPD=∠APD.在△POB和△PAB中,,∴△POB≌△PAB,∴∠POB=∠PAB.∵⊙P与x轴相切于原点O,∴∠POB=90°,∴∠PAB=90°,∴AB是⊙P的切线;②存在到四点O,P,A,B距离都相等的点Q.当点Q在线段BP中点时,∵∠POB=∠PAB=90°,∴QO=QP=BQ=AQ.此时点Q到四点O,P,A,B距离都相等.∵∠POB=90°,OA⊥PB,∴∠OBP=90°﹣∠DOB=∠POA,∴tan∠OBP==tan∠POA=.∵P点坐标为(0,6),∴OP=6,OB=OP=3.过点Q作QH⊥OB于H,如图3,则有∠QHB=∠POB=90°,∴QH∥PO,∴△BHQ∽△BOP,∴===,∴QH=OP=3,BH=OB=4,∴OH=3﹣4=4,∴点Q的坐标为(4,3),∴OQ==5,∴以Q为圆心,以OQ为半径的⊙O的方程为(x﹣4)1+(y﹣3)1=15.考点:圆的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论