广西柳州市城中区重点中学2024届中考数学全真模拟试题含解析_第1页
广西柳州市城中区重点中学2024届中考数学全真模拟试题含解析_第2页
广西柳州市城中区重点中学2024届中考数学全真模拟试题含解析_第3页
广西柳州市城中区重点中学2024届中考数学全真模拟试题含解析_第4页
广西柳州市城中区重点中学2024届中考数学全真模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西柳州市城中区重点中学2024届中考数学全真模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.在同一坐标系中,反比例函数y=与二次函数y=kx2+k(k≠0)的图象可能为()A. B.C. D.2.已知A(x1,y1),B(x2,y2)是反比例函数y=kx(k≠0)图象上的两个点,当x1<x2<0时,y1>y2A.第一象限B.第二象限C.第三象限D.第四象限3.已知为单位向量,=,那么下列结论中错误的是()A.∥ B. C.与方向相同 D.与方向相反4.将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2+3B.y=(x﹣2)2﹣3C.y=(x+2)2+3D.y=(x+2)2﹣35.抛物线的顶点坐标是()A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)6.下列几何体中,其三视图都是全等图形的是()A.圆柱 B.圆锥 C.三棱锥 D.球7.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A.1000(1+x)2=1000+440 B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+4408.一元二次方程mx2+mx﹣=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.29.如图,已知反比函数的图象过Rt△ABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若△ABO的周长为,AD=2,则△ACO的面积为()A. B.1 C.2 D.410.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为()A.60海里 B.45海里 C.20海里 D.30海里二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.12.二次函数y=的图象如图,点A0位于坐标原点,点A1,A2,A3…An在y轴的正半轴上,点B1,B2,B3…Bn在二次函数位于第一象限的图象上,点C1,C2,C3…Cn在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形An﹣1BnAnCn都是菱形,∠A0B1A1=∠A1B2A1=∠A2B3A3…=∠An1BnAn=60°,菱形An﹣1BnAnCn的周长为.13.计算:(+)=_____.14.下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第根图形需要____________根火柴.15.如图,△ABC的面积为6,平行于BC的两条直线分别交AB,AC于点D,E,F,G.若AD=DF=FB,则四边形DFGE的面积为_____.16.观察下列各等式:……根据以上规律可知第11行左起第一个数是__.三、解答题(共8题,共72分)17.(8分)某服装店用4000元购进一批某品牌的文化衫若干件,很快售完,该店又用6300元钱购进第二批这种文化衫,所进的件数比第一批多40%,每件文化衫的进价比第一批每件文化衫的进价多10元,请解答下列问题:(1)求购进的第一批文化衫的件数;(2)为了取信于顾客,在这两批文化衫的销售中,售价保持了一致.若售完这两批文化衫服装店的总利润不少于4100元钱,那么服装店销售该品牌文化衫每件的最低售价是多少元?18.(8分)如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).19.(8分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目

频数(人数)

羽毛球

30

篮球

乒乓球

36

排球

足球

12

请根据以上图表信息解答下列问题:频数分布表中的,;在扇形统计图中,“排球”所在的扇形的圆心角为度;全校有多少名学生选择参加乒乓球运动?20.(8分)正方形ABCD中,点P为直线AB上一个动点(不与点A,B重合),连接DP,将DP绕点P旋转90°得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N.问题出现:(1)当点P在线段AB上时,如图1,线段AD,AP,DM之间的数量关系为;题探究:(2)①当点P在线段BA的延长线上时,如图2,线段AD,AP,DM之间的数量关系为;②当点P在线段AB的延长线上时,如图3,请写出线段AD,AP,DM之间的数量关系并证明;问题拓展:(3)在(1)(2)的条件下,若AP=,∠DEM=15°,则DM=.21.(8分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.22.(10分)某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元.今年的总收入和总支出计划各是多少万元?23.(12分)如图,P是半圆弧上一动点,连接PA、PB,过圆心O作交PA于点C,连接已知,设O,C两点间的距离为xcm,B,C两点间的距离为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是小东的探究过程,请补充完整:通过取点、画图、测量,得到了x与y的几组值,如下表:012336说明:补全表格时相关数据保留一位小数建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;结合画出的函数图象,解决问题:直接写出周长C的取值范围是______.24.如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.(1)求证:PC是⊙O的切线;(2)若PC=3,PF=1,求AB的长.

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】

根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.2、B【解析】试题分析:当x1<x2<0时,y1>y2,可判定k>0,所以﹣k<0,即可判定一次函数y=kx﹣k的图象经过第一、三、四象限,所以不经过第二象限,故答案选B.考点:反比例函数图象上点的坐标特征;一次函数图象与系数的关系.3、C【解析】

由向量的方向直接判断即可.【详解】解:为单位向量,=,所以与方向相反,所以C错误,故选C.【点睛】本题考查了向量的方向,是基础题,较简单.4、D【解析】

先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.故选:D.【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5、A【解析】

已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选A.【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.6、D【解析】分析:任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.详解:圆柱,圆锥,三棱锥,球中,三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,故选D.点睛:本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图.7、A【解析】

根据题意可以列出相应的一元二次方程,从而可以解答本题.【详解】解:由题意可得,1000(1+x)2=1000+440,故选:A.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.8、C【解析】

由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值.【详解】∵一元二次方程mx1+mx﹣=0有两个相等实数根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,经检验m=0不合题意,则m=﹣1.故选C.【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.9、A【解析】

在直角三角形AOB中,由斜边上的中线等于斜边的一半,求出OB的长,根据周长求出直角边之和,设其中一直角边AB=x,表示出OA,利用勾股定理求出AB与OA的长,过D作DE垂直于x轴,得到E为OA中点,求出OE的长,在直角三角形DOE中,利用勾股定理求出DE的长,利用反比例函数k的几何意义求出k的值,确定出三角形AOC面积即可.【详解】在Rt△AOB中,AD=2,AD为斜边OB的中线,∴OB=2AD=4,由周长为4+2,得到AB+AO=2,设AB=x,则AO=2-x,根据勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,整理得:x2-2x+4=0,解得x1=+,x2=-,∴AB=+,OA=-,过D作DE⊥x轴,交x轴于点E,可得E为AO中点,∴OE=OA=(-)(假设OA=+,与OA=-,求出结果相同),在Rt△DEO中,利用勾股定理得:DE==(+)),∴k=-DE•OE=-(+))×(-))=1.∴S△AOC=DE•OE=,故选A.【点睛】本题属于反比例函数综合题,涉及的知识有:勾股定理,直角三角形斜边的中线性质,三角形面积求法,以及反比例函数k的几何意义,熟练掌握反比例的图象与性质是解本题关键.10、D【解析】

根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.【详解】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),

则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)故选:D.【点睛】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】

首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【详解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD交⊙D于P′,此时AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值为1.故答案为1.【点睛】圆外一点到圆上一点的距离最大值为点到圆心的距离加半径,最小值为点到圆心的距离减去半径.12、4n【解析】试题解析:∵四边形A0B1A1C1是菱形,∠A0B1A1=60°,∴△A0B1A1是等边三角形.设△A0B1A1的边长为m1,则B1(,);代入抛物线的解析式中得:,解得m1=0(舍去),m1=1;故△A0B1A1的边长为1,同理可求得△A1B2A2的边长为2,…依此类推,等边△An-1BnAn的边长为n,故菱形An-1BnAnCn的周长为4n.考点:二次函数综合题.13、1.【解析】

去括号后得到答案.【详解】原式=×+×=2+1=1,故答案为1.【点睛】本题主要考查了去括号的概念,解本题的要点在于二次根式的运算.14、【解析】

根据图形可得每增加一个金鱼就增加6根火柴棒即可解答.【详解】第一个图中有8根火柴棒组成,第二个图中有8+6个火柴棒组成,第三个图中有8+2×6个火柴组成,……∴组成n个系列正方形形的火柴棒的根数是8+6(n-1)=6n+2.故答案为6n+2【点睛】本题考查数字规律问题,通过归纳与总结,得到其中的规律是解题关键.15、1.【解析】

先根据题意可证得△ABC∽△ADE,△ABC∽△AFG,再根据△ABC的面积为6分别求出△ADE与△AFG的面积,则四边形DFGE的面积=S△AFG-S△ADE.【详解】解:∵DE∥BC,,

∴△ADE∽△ABC,∵AD=DF=FB,

∴=()1,即=()1,∴S△ADE=;∵FG∥BC,∴△AFG∽△ABC,

=()1,即=()1,∴S△AFG=;∴S四边形DFGE=S△AFG-S△ADE=-=1.故答案为:1.【点睛】本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用.16、-1.【解析】

观察规律即可解题.【详解】解:第一行=12=1,第二行=22=4,第三行=32=9...∴第n行=n2,第11行=112=121,又∵左起第一个数比右侧的数大一,∴第11行左起第一个数是-1.【点睛】本题是一道规律题,属于简单题,认真审题找到规律是解题关键.三、解答题(共8题,共72分)17、(1)50件;(2)120元.【解析】

(1)设第一批购进文化衫x件,根据数量=总价÷单价结合第二批每件文化衫的进价比第一批每件文化衫的进价多10元,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据第二批购进的件数比第一批多40%,可求出第二批的进货数量,设该服装店销售该品牌文化衫每件的售价为y元,根据利润=销售单价×销售数量-进货总价,即可得出关于y的一元一次不等式,解之取其内的最小值即可得出结论.【详解】解:(1)设第一批购进文化衫x件,根据题意得:+10=,解得:x=50,经检验,x=50是原方程的解,且符合题意,答:第一批购进文化衫50件;(2)第二批购进文化衫(1+40%)×50=70(件),设该服装店销售该品牌文化衫每件的售价为y元,根据题意得:(50+70)y﹣4000﹣6300≥4100,解得:y≥120,答:该服装店销售该品牌文化衫每件最低售价为120元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.18、【解析】

过点C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD==x,根据AD+BD=AB列方程求解可得.【详解】解:过点C作CD⊥AB于点D,设CD=x,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵,∴AD====x,由AD+BD=AB可得x+x=10,解得:x=5﹣5,答:飞机飞行的高度为(5﹣5)km.19、(1)24,1;(2)54;(3)360.【解析】

(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b;(2)利用360°乘以对应的百分比即可求得;(3)求得全校总人数,然后利用总人数乘以对应的百分比求解.【详解】(1)抽取的人数是36÷30%=120(人),则a=120×20%=24,b=120﹣30﹣24﹣36﹣12=1.故答案是:24,1;(2)“排球”所在的扇形的圆心角为360°×=54°,故答案是:54;(3)全校总人数是120÷10%=1200(人),则选择参加乒乓球运动的人数是1200×30%=360(人).20、(1)DM=AD+AP;(2)①DM=AD﹣AP;②DM=AP﹣AD;(3)3﹣或﹣1.【解析】

(1)根据正方形的性质和全等三角形的判定和性质得出△ADP≌△PFN,进而解答即可;(2)①根据正方形的性质和全等三角形的判定和性质得出△ADP≌△PFN,进而解答即可;②根据正方形的性质和全等三角形的判定和性质得出△ADP≌△PFN,进而解答即可;(3)分两种情况利用勾股定理和三角函数解答即可.【详解】(1)DM=AD+AP,理由如下:∵正方形ABCD,∴DC=AB,∠DAP=90°,∵将DP绕点P旋转90°得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N,∴DP=PE,∠PNE=90°,∠DPE=90°,∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,∴∠DAP=∠EPN,在△ADP与△NPE中,,∴△ADP≌△NPE(AAS),∴AD=PN,AP=EN,∴AN=DM=AP+PN=AD+AP;(2)①DM=AD﹣AP,理由如下:∵正方形ABCD,∴DC=AB,∠DAP=90°,∵将DP绕点P旋转90°得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N,∴DP=PE,∠PNE=90°,∠DPE=90°,∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,∴∠DAP=∠EPN,在△ADP与△NPE中,,∴△ADP≌△NPE(AAS),∴AD=PN,AP=EN,∴AN=DM=PN﹣AP=AD﹣AP;②DM=AP﹣AD,理由如下:∵∠DAP+∠EPN=90°,∠EPN+∠PEN=90°,∴∠DAP=∠PEN,又∵∠A=∠PNE=90°,DP=PE,∴△DAP≌△PEN,∴AD=PN,∴DM=AN=AP﹣PN=AP﹣AD;(3)有两种情况,如图2,DM=3﹣,如图3,DM=﹣1;①如图2:∵∠DEM=15°,∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,在Rt△PAD中AP=,AD==3,∴DM=AD﹣AP=3﹣;②如图3:∵∠DEM=15°,∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,在Rt△PAD中AP=,AD=AP•tan30°==1,∴DM=AP﹣AD=﹣1.故答案为;DM=AD+AP;DM=AD﹣AP;3﹣或﹣1.【点睛】此题是四边形综合题,主要考查了正方形的性质全等三角形的判定和性质,分类讨论的数学思想解决问题,判断出△A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论