高中数学:函数奇偶性的应用练习及答案_第1页
高中数学:函数奇偶性的应用练习及答案_第2页
高中数学:函数奇偶性的应用练习及答案_第3页
高中数学:函数奇偶性的应用练习及答案_第4页
高中数学:函数奇偶性的应用练习及答案_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

7/7高中数学:函数奇偶性的应用练习及答案函数奇偶性的应用1.已知一个奇函数的定义域为{-1,2,a,b},则a+b等于()A.-1B.1C.0D.22.已知函数f(x)的定义域为(3-2a,a+1),且f(x+1)为偶函数,则实数a的值可以是()A.2B.C.4D.63.已知函数f(x)=(m-1)x2+2mx+3为偶函数,则f(x)在区间(2,5)上是()A.增函数B.减函数C.有增有减D.增减性不确定4.已知函数f(x)=ax2+bx+3a+b是定义域为[a-1,2a]的偶函数,a+b的值是()A.0B.C.1D.-15.已知f(x)=ax2+bx+1是定义在[3a-2,2a+]上的偶函数,则5a+3b等于()A.B.C.0D.-6.若函数f(x)=为奇函数,则a等于()A.1B.2C.D.-7.若函数f(x)=ax2+(a-2b)x+a-1是定义在(-a,0)∪(0,2a-2)上的偶函数,则f等于()A.1B.3C.D.8.函数f(x)=x|x+a|+b满足f(-x)=-f(x)的条件是()A.ab=0B.a+b=0C.a=bD.a2+b2=09.已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)等于()A.4B.3C.2D.110.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)等于()A.-3B.-1C.1D.311.已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则f的值是()A.0B.C.1D.12.已知f(x)=x5-ax3+bx+2,且f(5)=17,则f(-5)的值为()A.-13B.13C.-19D.1913.设f(x)是奇函数,当x∈[0,+∞)时,f(x)≤m(m<0),则f(x)的值域是()A.[m,-m]B.(-∞,m]C.[-m,+∞)D.(-∞,m]∪[-m,+∞)14.若偶函数f(x)在区间[3,6]上是增函数且f(6)=9,则它在区间[-6,-3]上()A.最小值是9B.最小值是-9C.最大值是-9D.最大值是915.若φ(x),g(x)都是奇函数,f(x)=aφ(x)+bg(x)+3在(0,+∞)上有最大值10,则f(x)在(-∞,0)上有()A.最小值-4B.最大值-4C.最小值-1D.最大值-316.奇函数f(x)在(0,+∞)上的解析式是f(x)=x(1-x),则在(-∞,0)上f(x)的函数解析式是()A.f(x)=-x(1-x)B.f(x)=x(1+x)C.f(x)=-x(1+x)D.f(x)=x(x-1)17.若f(x)=(m-1)x2+6mx+2是偶函数,则f(0),f(1),f(-2)从小到大的排列是________.18.设函数f(x)=为奇函数,则实数a=________.19.已知y=f(x)+x2是奇函数且f(1)=1,若g(x)=f(x)+2,则g(-1)=________.20.设f(x)是定义在R上的奇函数,f(1)=2,且f(x+1)=f(x+6),则f(10)+f(4)=________.21.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=________.22.已知函数f(x)=ax3+bx+4(a,b均不为零),且f(5)=10,则f(-5)=________.23.已知函数f(x)=ax3-bx+1,a,b∈R,若f(-1)=-2,则f(1)=__________.24.已知函数f(x)是定义在R上的奇函数.当x<0时,f(x)=x2-4,则x>0时,f(x)的解析式为________,不等式f(x)<0的解集为___________.25.定义在R上的奇函数f(x)满足f(x+2)=-f(x),当0≤x≤1时,f(x)=x,(1)试画出f(x),x∈[-3,5]的图象;(2)求f(37.5);(3)常数a∈(0,1),y=a与f(x),x∈[-3,5]的图象相交,求所有交点横坐标之和.26.已知函数f(x)=,g(x)=f().(1)在图中的坐标系中补全函数f(x)在其定义域内的图象,并说明你的作图依据;(2)求证:f(x)+g(x)=1(x≠0).27.已知函数f(x)=mx2+nx+3m+n是偶函数,且其定义域为[m-1,2m].(1)求m,n的值;(2)求函数f(x)在其定义域上的最大值.28.已知函数f(x)=ax++c(a,b,c是常数)是奇函数,且满足f(1)=,f(2)=.(1)求a,b,c的值;(2)试判断函数f(x)在区间上的单调性并证明.29.已知函数f(x)=x2+2ax+2,x∈[-5,5].(1)当a=-1时,求函数f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.已知y=f(x)是定义在R上的奇函数,且当x>0时,f(x)=2x-x2,求y=f(x)的解析式.答案1.已知一个奇函数的定义域为{-1,2,a,b},则a+b等于()A.-1B.1C.0D.2【答案】A【解析】因为一个奇函数的定义域为{-1,2,a,b},根据奇函数的定义域关于原点对称,所以a与b有一个等于1,一个等于-2,所以a+b=1+(-2)=-1.故选A.2.已知函数f(x)的定义域为(3-2a,a+1),且f(x+1)为偶函数,则实数a的值可以是()A.2B.C.4D.6【答案】A【解析】因为函数f(x)的定义域为(3-2a,a+1),所以在函数f(x+1)中,3-2a<x+1<a+1,则函数f(x+1)的定义域为(2-2a,a),又因为f(x+1)为偶函数,所以2-2a=-a,a=2,故选A.3.已知函数f(x)=(m-1)x2+2mx+3为偶函数,则f(x)在区间(2,5)上是()A.增函数B.减函数C.有增有减D.增减性不确定【答案】B【解析】∵f(x)为偶函数,∴m=0,∴f(x)=-x2+3,开口向下,对称轴为y轴,∴f(x)在(2,5)上是减函数.4.已知函数f(x)=ax2+bx+3a+b是定义域为[a-1,2a]的偶函数,a+b的值是()A.0B.C.1D.-1【答案】B【解析】∵函数f(x)=ax2+bx+3a+b是定义域为[a-1,2a]的偶函数,∴a-1=-2a,b=0,解得a=,b=0,∴a+b=,故选B.5.已知f(x)=ax2+bx+1是定义在[3a-2,2a+]上的偶函数,则5a+3b等于()A.B.C.0D.-【答案】A【解析】∵f(x)为偶函数,∴f(-x)=f(x),即ax2+bx+1=ax2-bx+1,∴b=0.又f(x)的定义域为[3a-2,2a+],∴3a-2+2a+=0,∴a=.故5a+3b=.6.若函数f(x)=为奇函数,则a等于()A.1B.2C.D.-【答案】A【解析】由题意得f(-x)=-f(x),则==-,则-4x2+(2-2a)x+a=-4x2-(2-2a)x+a,所以2-2a=-(2-2a),所以a=1.7.若函数f(x)=ax2+(a-2b)x+a-1是定义在(-a,0)∪(0,2a-2)上的偶函数,则f等于()A.1B.3C.D.【答案】B【解析】因为偶函数的定义域关于原点对称,则-a+2a-2=0,解得a=2.又偶函数不含奇次项,所以a-2b=0,即b=1,所以f(x)=2x2+1.于是f=f(1)=3.8.函数f(x)=x|x+a|+b满足f(-x)=-f(x)的条件是()A.ab=0B.a+b=0C.a=bD.a2+b2=0【答案】D【解析】由已知,得-x|-x+a|+b=-x|x+a|-b,∴a=b=0,即a2+b2=0.9.已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)等于()A.4B.3C.2D.1【答案】B【解析】∵f(x)是奇函数,∴f(-1)=-f(1).又g(x)是偶函数,∴g(-1)=g(1).∵f(-1)+g(1)=2,∴g(1)-f(1)=2.①又f(1)+g(-1)=4,∴f(1)+g(1)=4.②由①②,得g(1)=3.10.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)等于()A.-3B.-1C.1D.3【答案】C【解析】分别令x=1和x=-1可得f(1)-g(1)=3和f(-1)-g(-1)=1,因为函数f(x),g(x)分别是定义在R上的偶函数和奇函数,所以f(-1)=f(1),g(-1)=-g(1),即f(-1)-g(-1)=1⇒f(1)+g(1)=1,则⇒⇒f(1)+g(1)=1,故选C.11.已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则f的值是()A.0B.C.1D.【答案】A【解析】因为xf(x+1)=(1+x)f(x),令x=,则f()=5×,令x=,则f=3×f,令x=-,则f=-f,又已知函数f(x)是定义在实数集R上的不恒为零的偶函数,所以f-f=0,所以f=f=f=0,又令x=-1,f(0)=0,所以f=f(0)=0.12.已知f(x)=x5-ax3+bx+2,且f(5)=17,则f(-5)的值为()A.-13B.13C.-19D.19【答案】A【解析】设g(x)=x5-ax3+bx,则g(x)为奇函数.f(x)=g(x)+2,f(5)=g(5)+2=17.∴g(5)=15,故g(-5)=-15.∴f(-5)=g(-5)+2=-15+2=-13.13.设f(x)是奇函数,当x∈[0,+∞)时,f(x)≤m(m<0),则f(x)的值域是()A.[m,-m]B.(-∞,m]C.[-m,+∞)D.(-∞,m]∪[-m,+∞)【答案】D【解析】当x≥0时,f(x)≤m;当x≤0时,-x≥0,所以f(-x)≤m,因为f(x)是奇函数,所以f(-x)=-f(x)≤m,即f(x)≥-m.14.若偶函数f(x)在区间[3,6]上是增函数且f(6)=9,则它在区间[-6,-3]上()A.最小值是9B.最小值是-9C.最大值是-9D.最大值是9【答案】D【解析】因为f(x)是偶函数且在区间[3,6]上是增函数,所以f(x)在区间[-6,-3]上是减函数.因此,f(x)在区间[-6,-3]上最大值为f(-6)=f(6)=9.15.若φ(x),g(x)都是奇函数,f(x)=aφ(x)+bg(x)+3在(0,+∞)上有最大值10,则f(x)在(-∞,0)上有()A.最小值-4B.最大值-4C.最小值-1D.最大值-3【答案】A【解析】由已知对任意x∈(0,+∞),f(x)=aφ(x)+bg(x)+3≤10.对任意x∈(-∞,0),则-x∈(0,+∞).又∵φ(x),g(x)都是奇函数,∴f(-x)=aφ(-x)+bg(-x)+3≤10,即-aφ(x)-bg(x)+3≤10,∴aφ(x)+bg(x)≥-7,∴f(x)=aφ(x)+bg(x)+3≥-7+3=-4.16.奇函数f(x)在(0,+∞)上的解析式是f(x)=x(1-x),则在(-∞,0)上f(x)的函数解析式是()A.f(x)=-x(1-x)B.f(x)=x(1+x)C.f(x)=-x(1+x)D.f(x)=x(x-1)【答案】B【解析】设x<0,则-x>0,因为函数f(x)在(0,+∞)上的解析式是f(x)=x(1-x),所以f(-x)=-x(1+x),又函数f(x)是奇函数,即f(-x)=-f(x),则当x<0时,f(x)=-f(-x)=x(1+x).故选B.17.若f(x)=(m-1)x2+6mx+2是偶函数,则f(0),f(1),f(-2)从小到大的排列是________.【答案】f(-2)<f(1)<f(0)【解析】∵f(x)是偶函数,∴f(-x)=f(x)恒成立,即(m-1)x2-6mx+2=(m-1)x2+6mx+2恒成立,∴m=0,即f(x)=-x2+2.∵f(x)的图象开口向下,对称轴为y轴,在[0,+∞)上单调递减,∴f(2)<f(1)<f(0),即f(-2)<f(1)<f(0).18.设函数f(x)=为奇函数,则实数a=________.【答案】-1【解析】∵f(x)是奇函数,∴f(-x)=-f(x),即=-,∴2a=-2,解得a=-1.19.已知y=f(x)+x2是奇函数且f(1)=1,若g(x)=f(x)+2,则g(-1)=________.【答案】-1【解析】∵y=f(x)+x2是奇函数,∴f(-x)+(-x)2=-[f(x)+x2],∴f(x)+f(-x)+2x2=0,∴f(1)+f(-1)+2=0.∵f(1)=1,∴f(-1)=-3.∵g(x)=f(x)+2,∴g(-1)=f(-1)+2=-3+2=-1.20.设f(x)是定义在R上的奇函数,f(1)=2,且f(x+1)=f(x+6),则f(10)+f(4)=________.【答案】-2【解析】因为f(x+1)=f(x+6),所以f(x)=f(x+5).因为f(x)是R上的奇函数,所以f(0)=0,则f(10)=f(5)=f(0)=0,f(4)=f(-1)=-f(1)=-2.所以f(10)+f(4)=-2.21.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=________.【答案】-2【解析】f(7)=f(3+4)=f(3)=f(-1+4)=f(-1),∵f(x)为奇函数,∴f(-1)=-f(1),∵1∈(0,2),∴f(1)=2×12=2,∴f(7)=-f(1)=-2.22.已知函数f(x)=ax3+bx+4(a,b均不为零),且f(5)=10,则f(-5)=________.【答案】-2【解析】令g(x)=ax3+bx(a,b均不为零),易知g(x)为奇函数,从而g(5)=-g(-5).因为f(x)=g(x)+4,所以g(5)=f(5)-4=6,所以f(-5)=g(-5)+4=-g(5)+4=-2.23.已知函数f(x)=ax3-bx+1,a,b∈R,若f(-1)=-2,则f(1)=__________.【答案】4【解析】∵f(x)=ax3-bx+1,∴f(-x)=a(-x)3-b(-x)+1=-ax3+bx+1,得f(x)+f(-x)=(ax3-bx+1)+(-ax3+bx+1)=2,令x=1,得f(1)+f(-1)=2,∵f(-1)=-2,∴f(1)=2-f(-1)=2+2=4.24.已知函数f(x)是定义在R上的奇函数.当x<0时,f(x)=x2-4,则x>0时,f(x)的解析式为________,不等式f(x)<0的解集为___________.【答案】f(x)=-x2+4(-2,0)∪(2,+∞)【解析】当x>0时,-x<0,所以f(-x)=(-x)2-4=x2-4,因为函数f(x)是定义在R上的奇函数,所以f(-x)=x2-4=-f(x),所以f(x)=-x2+4,即x>0时,f(x)=-x2+4.当x<0时,f(x)<0,即x2-4<0,解得-2<x<2,又因为x<0,所以-2<x<0;当x>0时,f(x)<0,即4-x2<0,解得x<-2或x>2,又因为x>0,所以x>2.综上可得f(x)<x的解集是(-2,0)∪(2,+∞).25.定义在R上的奇函数f(x)满足f(x+2)=-f(x),当0≤x≤1时,f(x)=x,(1)试画出f(x),x∈[-3,5]的图象;(2)求f(37.5);(3)常数a∈(0,1),y=a与f(x),x∈[-3,5]的图象相交,求所有交点横坐标之和.【答案】(1)∵f(x)为奇函数,∴f(x+2)=f(-x),∴f(x)关于直线x=1对称.由f(x)在[0,1]上的图象反复关于(0,0),x=1对称,可得f(x),x∈[-3,5]的图象如图.(2)由图可知f(x+4)=f(x),∴f(37.5)=f(4×9+1.5)=f(1.5)=f(0.5)=.(3)由图可知,当a∈(0,1)时,y=a与f(x),x∈[-3,5]有4个交点,设为x1,x2,x3,x4(x1<x2<x3<x4).由图可知=-1,=3.∴x1+x2+x3+x4=-2+6=4.26.已知函数f(x)=,g(x)=f().(1)在图中的坐标系中补全函数f(x)在其定义域内的图象,并说明你的作图依据;(2)求证:f(x)+g(x)=1(x≠0).【答案】(1)∵f(x)=,∴f(x)的定义域为R.又对任意x∈R,都有f(-x)===f(x),∴f(x)为偶函数,故f(x)的图象关于y轴对称,其图象如图.(2)∵g(x)=f()==(x≠0),∴f(x)+g(x)=+==1,即f(x)+g(x)=1(x≠0).27.已知函数f(x)=mx2+nx+3m+n是偶函数,且其定义域为[m-1,2m].(1)求m,n的值;(2)求函数f(x)在其定义域上的最大值.【答案】(1)∵函数f(x)=mx2+nx+3m+n是偶函数,∴函数的定义域关于原点对称,又∵函数f(x)的定义域为[m-1,2m].∴m-1+2m=0,解得m=,又由f(-x)=mx2-nx+3m+n=f(x)=mx2+nx+3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论