版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省池州市完全中学高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列四个函数:①y=x+1;②y=x-1;③y=-1;④y=,其中定义域与值域相同的是()A.①②④
B.①②③
C.②③
D.②③④参考答案:A略2.下列函数,在区间(0,2)上是增函数的是(
)
A.
B.C.
D.参考答案:B略3.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,已知第n行的所有数字之和为,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,……,则此数列的前56项和为(
)A.2060 B.2038 C.4084 D.4108参考答案:C【分析】利用n次二项式系数对应杨辉三角形的第行,然后令得到对应项的系数和,结合等比数列和等差数列的公式进行转化求解即可.【详解】n次二项式系数对应杨辉三角形的第行,例如,系数分别为1,2,1,对应杨辉三角形的第3行,令,就可以求出该行的系数之和,第1行为,第2行为,第3行为,以此类推,即每一行数字和为首项为1,公比为2的等比数列.则杨辉三角形的前n项和为若去除所有的为1的项,则剩下的每一行的个数为1,2,3,4,…,可以看成构成一个首项为1,公差为1的等差数列,则,可得当,去除两端“1”可得,则此数列前55项和为,所以第56项为第13行去除1的第一个数,所以该数列前56项和为,故选C.【点睛】本题主要考查了数列求和,杨辉三角形的的系数与二项式系数的关系以及等比、等差数列的求和公式,属于难题.4.已知函数则函数y=f[f(x)]+1的零点个数是(
)A.4 B.3 C.2 D.1参考答案:A【考点】函数的零点与方程根的关系.【专题】计算题;压轴题.【分析】由已知中函数我们可以求出函数y=f[f(x)]+1的解析式,令y=0,我们可以分别求出方程f[f(x)]+1=0的根,进而得到其零点的个数【解答】解:由函数可得由,故函数y=f[f(x)]+1共4个零点,故选A.【点评】本题考查的知识点是函数的零点,与方程根的关系,其中根据已知中函数Y=f(x)的解析式,求出函数y=f[f(x)]+1的解析式,是解答本题的关键.5.已知数列{an}满足,,Sn是数列{an}的前n项和,则(
)A.
B.C.数列是等差数列
D.数列{an}是等比数列参考答案:B数列满足,,当时,两式作商可得:,∴数列的奇数项,成等比,偶数项,成等比,对于A来说,,错误;对于B来说,,正确;对于C来说,数列是等比数列,错误;对于D来说,数列是等比数列,错误,故选:B
6.从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为,中位数分别为m甲,m乙,则
A.,m甲>m乙
B.,m甲<m乙,
C.,m甲>m乙,
D.,m甲<m乙,参考答案:B7.若、,则是的
(
)A.充分非必要条件
B.必要非充分条件
C.充要条件
D.非充分非必要条件参考答案:B8.若不等式3x2﹣logax<0对任意恒成立,则实数a的取值范围为()A. B. C. D.参考答案:A【考点】函数恒成立问题.【分析】构造函数f(x)=3x2,g(x)=﹣logax.h(x)=f(x)+g(x)(0<x<),根据不等式3x2﹣logax<0对任意恒成立,可得f()≤g(),从而可得0<a<1且a≥,即可求出实数a的取值范围.【解答】解:构造函数f(x)=3x2,g(x)=﹣logax,(0<x<)∵不等式3x2﹣logax<0对任意恒成立,∴f()≤g()∴3?﹣loga≤0.∴0<a<1且a≥,∴实数a的取值范围为[,1).故选:A.9.在数列{an}中,已知a1=2,,则a4等于(
)A.4
B.11
C.10
D.8参考答案:B略10.已知全集={0,1,2,3,4},={0,1,2},={2,3},则∩=(
)A.
B.
C.
D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.在△ABC中,,其面积为,则tan2A?sin2B的最大值是
.参考答案:3﹣2【考点】9R:平面向量数量积的运算;HW:三角函数的最值.【分析】根据数量积运算与三角形的面积公式求出C的值,从而求出A+B的值;利用三角恒等变换化tan2A?sin2B为tan2A?,设tan2A=t,t∈(0,1);上式化为t?=,利用基本不等式求出它的最大值.【解答】解:△ABC中,,∴bacos(π﹣C)=﹣bacosC=2,∴abcosC=﹣2;又三角形的面积为absinC=,∴absinC=2;∴sinC=﹣cosC,∴C=,∴A+B=;∴tan2A?sin2B=tan2A?sin2(﹣A)=tan2A?cos2A=tan2A?(cos2A﹣sin2A)=tan2A?=tan2A?;设tan2A=t,则t∈(0,1);上式化为t?===﹣(t+1)﹣+3≤﹣2?+3=3﹣2,当且仅当t+1=,即t=﹣1时取“=”;∴所求的最大值是3﹣2.12.函数的定义域是
.参考答案:略13.设等比数列{an}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=
.参考答案:10考点:等比数列的性质.专题:等差数列与等比数列.分析:由题意可得a4a7=a5a6,解之可得a5a6,由对数的运算可得log3a1+log3a2+…+log3a10=log3(a1a2…a10)=log3(a5a6)5,代入计算可得.解答: 解:由题意可得a5a6+a4a7=2a5a6=18,解得a5a6=9,∴log3a1+log3a2+…+log3a10=log3(a1a2…a10)=log3(a5a6)5=log395=log3310=10故答案为:10点评:本题考查等比数列的性质和通项公式,涉及对数的运算,属中档题.14.如图,正三棱柱ABC-A1B1C1的全面积为且,则三棱锥的体积为
▲
.参考答案:
15.(3分)若f(x)=x(|x|﹣2)在区间[﹣2,m]上的最大值为1,则实数m的取值范围是
.参考答案:[﹣1,+1]考点: 函数的最值及其几何意义.专题: 计算题;作图题;函数的性质及应用.分析: 作函数f(x)=x(|x|﹣2)的图象,由图象知当f(x)=1时,x=﹣1或x=+1;从而由图象求解.解答: 作函数f(x)=x(|x|﹣2)的图象如下,当f(x)=1时,x=﹣1或x=+1;故由图象可知,实数m的取值范围是[﹣1,+1].故答案为:[﹣1,+1].点评: 本题考查了函数的图象的应用及最值的求法,属于基础题.16.已知,下面四个等式中,正确的命题为__________________.①;②;③;④;参考答案:③略17.若式子在实数范围内有意义,则x的取值范围是____________。参考答案:x≥4略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数是定义在上的偶函数,当时,。(1)求的函数解析式,并用分段函数的形式给出;(2)作出函数的简图;(3)写出函数的单调区间及最值.参考答案:(1)当时,,
则
是偶函数
(如果通过图象直接给对解析式得2分)(2)函数的简图:
(3)单调增区间为和
单调减区间为和
当或时,有最小值-2
略19.(12分)已知函数f(x)=cos2x+asinx﹣a2+2a+5(1)当a=1时,求函数f(x)的最大值;(2)若函数f(x)有最大值2,试求实数a的值.参考答案:考点: 三角函数的最值.专题: 函数的性质及应用;三角函数的求值.分析: (1)由a=1,化简可得f(x)=﹣sin2x+sinx+7,从而解得f(x)≤;(2)y=﹣sin2x+asinx﹣a2+2a+6,令sinx=t,t∈,有y=﹣t2+at﹣a2+2a+6,对称轴为t=,讨论即可求得a的值.解答: (1)∵a=1∴f(x)=﹣sin2x+asinx﹣a2+2a+6=﹣sin2x+sinx+7∴可解得:f(x)≤(2)y=﹣sin2x+asinx﹣a2+2a+6,令sinx=t,t∈y=﹣t2+at﹣a2+2a+6,对称轴为t=,当<﹣1,即a<﹣2时,是函数y的递减区间,ymax=y|t=﹣1=﹣a2+a+5=2得a2﹣a﹣3=0,a=,与a<﹣2矛盾;当>1,即a>2时,是函数y的递增区间,ymax=y|t=1=﹣a2+3a+5=2得a2﹣3a﹣3=0,a=,而a>2,即a=;当﹣1≤≤1,即﹣2≤a≤2时,ymax=y=﹣a2+2a+6=2得3a2﹣8a﹣16=0,a=4,或﹣,而﹣2≤a≤2,即a=﹣;∴a=﹣,或.点评: 本题主要考查了三角函数的最值,一元二次函数的性质的应用,属于基本知识的考查.20.已知数列{an}的前n项和(其中q为常数),且(1)求{an};(2)若{an}是递增数列,求数列的前n项和Tn.参考答案:解:(1)由得:或,时,,,时,,.(2)法一:由题,,,,,相减得:,∴. 法二:由题,,,所以.
21.已知函数(1)、求与,与的值;(2)、由(1)中求得的结果,你能发现与有什么关系?证明你的发现;(3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44709-2024旅游景区雷电灾害防御技术规范
- 铝业加工厂二零二四年租赁合同
- 三峡课文的知识课件
- 轮胎企业市场营销策划与实施合同(二零二四年度)
- 全新集体合同模板
- 2024版艺术品交易居间协议3篇
- 2024年度原材料采购长期供货协议3篇
- 介绍英国汽车课件
- 化工原理实验下:吸收实验511
- 人教版九年级化学第一单元复习课件
- AC10C沥青混合料配合比设计
- 井眼净化技术
- 桥梁工程—梁-拱组合结构桥梁施工工艺
- 单区长杨凌现代农业研学旅行推介词定稿426
- 事故调查笔录模板(共5页)
- 工程总承包EPC实施方案最新版精编版
- 石油套管接箍加工工艺(共25页)
- 表8----项目管理班子配备情况辅助说明资料
- 一般纳税人申报表模板
- 浅谈如何做好博物馆安全保卫工作
- 咽喉炎PPT精选课件
评论
0/150
提交评论