版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省东营市利津县第二中学2022年高二数学文知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,,则等于A.B.C.D.参考答案:B略2.已知=(﹣2,1),=(k,﹣3),=(1,2),若(﹣2)⊥,则||=()A. B. C. D.参考答案:A【考点】平面向量数量积的运算;平面向量的坐标运算.【分析】求出向量﹣2,利用向量的垂直,数量积为0,列出方程求解向量,然后求解向量的模即可.【解答】解:=(﹣2,1),=(k,﹣3),=(1,2),﹣2=(﹣2﹣2k,7),(﹣2)⊥,可得:﹣2﹣2k+14=0.解得k=6,=(6,﹣3),所以||==3.故选:A.3.f'(x)是f(x)的导函数,f'(x)的图象如图所示,则f(x)的图象只可能是(
)。
参考答案:D略4.阅读如图所示的程序框图,运行相应的程序,输出的结果是()A.16 B.8 C.4 D.2参考答案:B【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算S值重新为2时变量n的值,并输出,模拟程序的运行过程,即可得到答案.【解答】解:程序在运行过程中各变量的值如下表示:
S
n
是否继续循环第一圈﹣1
2
是第二圈
0.5
4
是第三圈
2
8
否则输出的结果为8故选:B.5.设一组数据的方差是S,将这组数据的每个数都乘以10,所得到的一组新数据的方差是()A.0.1
B.C.10D.100参考答案:D略6.边长为的三角形的最大角与最小角的和是(
)A
B
C.
D
参考答案:D7.如果执行下面的程序框图,输入,,那么输出的等于(
)A.720
B.360
C.240
D.120参考答案:B8.设为直线,为三个不同的平面,下列命题正确的是(
▲
)A.若则
B.若则C.若则
D.若则参考答案:A略9.已知命题p:x1,x2R,(f(x2)f(x1))(x2x1)≥0,则p是(
)
A.x1,x2R,(f(x2)f(x1))(x2x1)≤0
B.x1,x2R,(f(x2)f(x1))(x2x1)≤0C.x1,x2R,(f(x2)f(x1))(x2x1)<0
D.x1,x2R,(f(x2)f(x1))(x2x1)<0参考答案:C10.“a和b都不是偶数”的否定形式是(
)
A.a和b至少有一个是偶数
B.a和b至多有一个是偶数
C.a是偶数,b不是偶数
D.a和b都是偶数参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.设公比为q的等比数列{an}的前n项和为Sn,若Sn+1、Sn、Sn+2成等差数列,则q=
.参考答案:﹣2【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】通过记等比数列{an}的通项为an,利用Sn﹣Sn+1=Sn+2﹣Sn即﹣an?q=an?q+an?q2,计算即得结论.【解答】解:记等比数列{an}的通项为an,则an+1=an?q,an+2=an?q2,又∵Sn+1、Sn、Sn+2成等差数列,∴Sn﹣Sn+1=Sn+2﹣Sn,即﹣an?q=an?q+an?q2,∴q2+2q=0,∴q=﹣2,故答案为:﹣2.【点评】本题考查等差数列、等比数列的性质,注意解题方法的积累,属于中档题.12.已知0<x<1则x(3-3x)取最大值时x的值为
参考答案:略13.复数的虚部为________.参考答案:;14.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:队员i123456三分球个数右图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填
,输出的=
.参考答案:15.已知函数_______.参考答案:016.已知函数,关于的方程,给出下列四个命题:①存在实数,使得方程恰有2个不同的实根;②存在实数,使得方程恰有3个不同的实根;③存在实数,使得方程恰有5个不同的实根;④存在实数,使得方程恰有8个不同的实根.其中真命题的序号为______
______参考答案:①③④17.已知四面体P-ABC中,PA=PB=PC,且AB=AC,∠BAC=90°,则异面直线PA与BC所成的角为________.
参考答案:90°如图,取BC的中点D,连结PD,AD.∵△PBC是等腰三角形,∴BC⊥PD.又∵△BAC是等腰三角形,∴BC⊥AD.∴BC⊥平面PAD.∴BC⊥PA,∴异面直线PA与BC所成的角为90°.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知椭圆的焦点在轴上,中心在原点,离心率,直线和以原点为圆心,椭圆的短半轴为半径的圆相切.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆的左、右顶点分别为、,点是椭圆上异于、的任意一点,设直线、的斜率分别为、,证明为定值.参考答案:(Ⅰ)椭圆方程
19.在某单位的职工食堂中,食堂每天以3元/个的价格从面包店购进面包,然后以5元/个的价格出售.如果当天卖不完,剩下的面包以1元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如图所示.食堂某天购进了90个面包,以x(单位:个,60≤x≤110)表示面包的需求量,T(单位:元)表示利润.(Ⅰ)求T关于x的函数解析式;(Ⅱ)求食堂每天面包需求量的中位数;(Ⅲ)根据直方图估计利润T不少于100元的概率.参考答案:【考点】CC:列举法计算基本事件数及事件发生的概率;B8:频率分布直方图.【分析】(Ⅰ)当60≤x≤90时,利润T=5x+1×(90﹣x)﹣3×90,当90<x≤110时,利润T=5×90﹣3×90,由此能求出T关于x的函数解析式.(Ⅱ)设食堂每天面包需求量的中位数为t,利用频率分布直方图能求出食堂每天面包需求量的中位数.(III)由题意,设利润T不少于100元为事件A,当利润T不少于100元时,求出70≤x≤110,由直方图能求出当70≤x≤110时,利润T不少于100元的概率.【解答】解:(Ⅰ)由题意,当60≤x≤90时,利润T=5x+1×(90﹣x)﹣3×90=4x﹣180,当90<x≤110时,利润T=5×90﹣3×90=180,∴T关于x的函数解析式T=.…(Ⅱ)设食堂每天面包需求量的中位数为t,则10×0.025+10×0.015+(t﹣80)×0.020=,解得t=85,故食堂每天面包需求量的中位数为85个.…(III)由题意,设利润T不少于100元为事件A,由(Ⅰ)知,利润T不少于100元时,即4x﹣180≥100,∴x≥70,即70≤x≤110,由直方图可知,当70≤x≤110时,利润T不少于100元的概率:P(A)=1﹣P()=1﹣0.025×(70﹣60)=0.75.…20.(本小题满分15分)设函数(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在x∈[-1,1]内没有极值点,求a的取值范围;
(Ⅲ)若对任意的a∈[3,6],不等式在x∈[-2,2]上恒成立,求m的取值范围.参考答案:解:(Ⅰ)∵f′(x)=3x2+2ax-a2=3(x-)(x+a),又a>0,∴当x<-a或x>时f′(x)>0;
当-a<x<时,f′(x)<0.∴函数f(x)的单调递增区间为(-∞,-a),(,+∞),单调递减区间为(-a,).(Ⅱ)由题设可知,方程f′(x)=3x2+2ax-a2=0在[-1,1]上没有实根∴,解得a>3.
(Ⅲ)∵a∈[3,6],∴由(Ⅰ)知∈[1,2],-a≤-3又x∈[-2,2]
∴f(x)max=max{f(-2),f(2)}而f(2)-f(-2)=16-4a2<0
f(x)max=f(-2)=-8+4a+2a2+m(10分)
又∵f(x)≤1在[-2,2]上恒成立
∴f(x)max≤1即-8+4a+2a2+m≤1即m≤9-4a-2a2,在a∈[3,6]上恒成立
∵9-4a-2a2的最小值为-87
∴m≤-87.21.某种商品在30天内每件的销售价格(元)与时间(天)的函数关系用右下图(1)的两条线段表示;该商品在30天内日销售量(件)与时间(天)之间的关系。(Ⅰ)根据提供的图象,写出该商品每件的销售价格与时间的函数关系式;(Ⅱ)问这30天内,哪天的销售额最大,最大是多少?(销售额=销售价格销售量)
参考答案:
22.如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:
(1)这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛成绩的平均数、众数、中位数。(不要求写过程)(3)从成绩是80分以上(包括80分)的学生中选两人,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深圳二手房公积金贷款合同样本
- 小学生情绪课堂模板
- 现状与挑战:就业市场模板
- 山西财经大学华商学院《电力技术经济》2023-2024学年第一学期期末试卷
- 儿童秋季常见病预防知识
- 2024年生鲜电商项目合作计划书
- 山东中医药大学《分析化学(1)》2023-2024学年第一学期期末试卷
- 门面转让房屋合同范例
- 地产项目门窗安装合同范例
- 团干培训心得体会总结
- 主体幸福感模型的理论建构
- 广东建材产品见证取样检测要求及送检办法
- 观察记录那些事儿-走进经典阅读《聚焦式观察:儿童观察、评价与课程设计》优质课件PPT
- QC小组(提高维修效率)课件
- 领导干部的法治思维概论
- 火成岩岩石化学图解与判别
- 《幼儿园3-6岁儿童学习与发展指南》科学领域
- 高中物理-电场的能的性质教学设计学情分析教材分析课后反思
- 预防医学(第7版)PPT课件 第八章 临床预防服务概论
- 医院安全保卫应急处置预案6篇
- 【基于PLC的抢答器控制系统设计8800字(论文)】
评论
0/150
提交评论