2024年中考数学复习(全国版)第三章 函数真题测试(基础版)(解析版)_第1页
2024年中考数学复习(全国版)第三章 函数真题测试(基础版)(解析版)_第2页
2024年中考数学复习(全国版)第三章 函数真题测试(基础版)(解析版)_第3页
2024年中考数学复习(全国版)第三章 函数真题测试(基础版)(解析版)_第4页
2024年中考数学复习(全国版)第三章 函数真题测试(基础版)(解析版)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章函数章节测试(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(2023·山西·统考中考真题)一种弹簧秤最大能称不超过的物体,不挂物体时弹簧的长为,每挂重物体,弹簧伸长.在弹性限度内,挂重后弹簧的长度与所挂物体的质量之间的函数关系式为(

A. B. C. D.【答案】B【分析】挂重后弹簧长度等于不挂重时的长度加上挂重后弹簧伸长的长度,据此即可求得函数关系式.【详解】解:由题意知:;故选:B.【点睛】本题考查了求函数关系式,正确理解题意是关键.2.(2023·内蒙古·统考中考真题)在平面直角坐标系中,将正比例函数的图象向右平移3个单位长度得到一次函数的图象,则该一次函数的解析式为(

)A. B. C. D.【答案】B【分析】根据一次函数的平移规律求解即可.【详解】解:正比例函数的图象向右平移3个单位长度得:,故选:B.【点睛】题目主要考查一次函数的平移,熟练掌握平移规律是解题关键.3.(2023·内蒙古通辽·统考中考真题)已知点在反比例函数的图像上,且,则下列结论一定正确的是(

)A. B. C. D.【答案】D【分析】把点A和点B的坐标代入解析式,根据条件可判断出、的大小关系.【详解】解:∵点,)是反比例函数的图像上的两点,∴,∵,∴,即,故D正确.故选:D.【点睛】本题主要考查反比例函数图像上点的坐标特征,掌握图像上点的坐标满足函数解析式是解题的关键.4.(2023·甘肃兰州·统考中考真题)已知二次函数,下列说法正确的是(

)A.对称轴为 B.顶点坐标为 C.函数的最大值是-3 D.函数的最小值是-3【答案】C【分析】根据二次函数的图象及性质进行判断即可.【详解】二次函数的对称轴为,顶点坐标为∵∴二次函数图象开口向下,函数有最大值,为∴A、B、D选项错误,C选项正确故选:C.【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数图象和性质是解题的关键.5.(2023·四川·统考中考真题)向高为10的容器(形状如图)中注水,注满为止,则水深h与注水量v的函数关系的大致图象是()

A.

B.

C.

D.

【答案】D【分析】从水瓶的构造形状上看,从底部到顶部的变化关系为:开始宽,逐渐细小,再变宽,再从函数的图象上看,选出答案.【详解】解:从水瓶的构造形状上看,从底部到顶部的变化关系为:开始宽,逐渐细小,再变宽.则注入的水量v随水深h的变化关系为:先慢再快,最后又变慢,那么从函数的图象上看,C对应的图象变化为先快再慢,最后又变快,不符合;A、B对应的图象中间没有变化,只有D符合条件.故选:D.【点睛】本题主要考查函数的定义及函数的图象的关系,抓住变量之间的变化关系是解题的关键.6.(2023·山东临沂·统考中考真题)对于某个一次函数,根据两位同学的对话得出的结论,错误的是(

)A. B. C. D.【答案】C【分析】首先根据一次函数的性质确定k,b的符号,再确定一次函数系数的符号,判断出函数图象所经过的象限.【详解】解:∵一次函数的图象不经过第二象限,∴,故选项A正确,不符合题意;∴,故选项B正确,不符合题意;∵一次函数的图象经过点,∴,则,∴,故选项C错误,符合题意;∵,∴,故选项D正确,不符合题意;故选:C.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.7.(2023·吉林长春·统考中考真题)如图,在平面直角坐标系中,点、在函数的图象上,分别以、为圆心,为半径作圆,当与轴相切、与轴相切时,连结,,则的值为(

)A.3 B. C.4 D.6【答案】C【分析】过点分别作轴的垂线,垂足分别为,交于点,得出的横坐标为,的纵坐标为,设,,则,根据,即可求解.【详解】解:如图所示,过点分别作轴的垂线,垂足分别为,交于点,依题意,的横坐标为,的纵坐标为,设,∴,则,又∵,,∴∴,∴解得:,故选:C.【点睛】本题考查了切线的性质,反比例函数的性质,勾股定理,掌握以上知识是解题的关键.8.(2023·内蒙古通辽·统考中考真题)如图,抛物线与x轴交于点,其中,下列四个结论:①;②;③;④不等式的解集为.其中正确结论的个数是(

A.1 B.2 C.3 D.4【答案】C【分析】根据函数图象可得出a,b,c的符号即可判断①,当时,即可判断②;根据对称轴为,可判断③;,数形结合即可判断④.【详解】解:∵抛物线开口向上,对称轴在y轴右边,与y轴交于正半轴,∴,∴,故①正确.∵当时,,∴,故②错误.∵抛物线与x轴交于两点,其中,∴,∴,当时,,当时,,,,∴,∴,故③正确;设,,如图:

由图得,时,,故④正确.综上,正确的有①③④,共3个,故选:C.【点睛】本题考查了二次函数的图象及性质,根据二次函数的图象及性质巧妙借助数学结合思想解决问题是解题的关键.9.(2023·湖南怀化·统考中考真题)如图,反比例函数的图象与过点的直线相交于、两点.已知点的坐标为,点为轴上任意一点.如果,那么点的坐标为(

A. B. C.或 D.或【答案】D【分析】反比例函数的图象过点,可得,进而求得直线的解析式为,得出点的坐标,设,根据,解方程即可求解.【详解】解:∵反比例函数的图象过点∴∴设直线的解析式为,∴,解得:,∴直线的解析式为,联立,解得:或,∴,设,∵,解得:或,∴的坐标为或,故选:D.【点睛】本题考查了一次函数与反比例数交点问题,待定系数法求解析式,求得点的坐标是解题的关键.10.(2023·四川泸州·统考中考真题)已知二次函数(其中是自变量),当时对应的函数值均为正数,则的取值范围为()A. B.或C.或 D.或【答案】D【分析】首先根据题意求出对称轴,然后分两种情况:和,分别根据二次函数的性质求解即可.【详解】∵二次函数,∴对称轴,当时,∵当时对应的函数值均为正数,∴此时抛物线与x轴没有交点,∴,∴解得;当时,∵当时对应的函数值均为正数,∴当时,,∴解得,∴,∴综上所述,当时对应的函数值均为正数,则的取值范围为或.故选:D.【点睛】此题考查了二次函数的图象和性质,解题的关键是分两种情况讨论.二、填空题(本大题共10小题,每小题3分,共30分)11.(2023·山东枣庄·统考中考真题)银杏是著名的活化石植物,其叶有细长的叶柄,呈扇形.如图是一片银杏叶标本,叶片上两点B,C的坐标分别为,将银杏叶绕原点顺时针旋转后,叶柄上点A对应点的坐标为___________.

【答案】【分析】根据点的坐标,确定坐标系的位置,再根据旋转的性质,进行求解即可.【详解】解:∵B,C的坐标分别为,∴坐标系的位置如图所示:

∴点的坐标为:,连接,将绕点顺时针旋转后,如图,叶柄上点A对应点的坐标为;故答案为:【点睛】本题考查坐标与旋转.解题的关键是确定原点的位置,熟练掌握旋转的性质.12.(2023·山东·统考中考真题)一个函数过点,且随增大而增大,请写出一个符合上述条件的函数解析式_________.【答案】(答案不唯一)【分析】根据题意及函数的性质可进行求解.【详解】解:由一个函数过点,且随增大而增大,可知该函数可以为(答案不唯一);故答案为(答案不唯一).【点睛】本题主要考查正比例函数的性质,熟练掌握正比例函数的性质是解题的关键.13.(2023·广东·统考中考真题)某蓄电池的电压为,使用此蓄电池时,电流(单位:)与电阻(单位:)的函数表达式为,当时,的值为_______.【答案】4【分析】将代入中计算即可;【详解】解:∵,∴故答案为:4.【点睛】本题考查已知自变量的值求函数值,掌握代入求值的方法是解题的关键.14.(2023·内蒙古·统考中考真题)已知二次函数,若点在该函数的图象上,且,则的值为________.【答案】2【分析】将点代入函数解析式求解即可.【详解】解:点在上,∴,,解得:(舍去)故答案为:2.【点睛】题目主要考查二次函数图象上的点的特点,理解题意求解是解题关键.15.(2023·黑龙江绥化·统考中考真题)如图,在平面直角坐标系中,与的相似比为,点是位似中心,已知点,点,.则点的坐标为_______.(结果用含,的式子表示)

【答案】【分析】过点分别作轴的垂线垂足分别为,根据题意得出,则,得出,即可求解.【详解】解:如图所示,过点分别作轴的垂线垂足分别为,

∵与的相似比为,点是位似中心,∴∵,∴,∴,∴∴故答案为:.【点睛】本题考查了求位似图形的坐标,熟练掌握位似图形的性质是解题的关键.16.(2023·天津·统考中考真题)若直线向上平移3个单位长度后经过点,则的值为________.【答案】5【分析】根据平移的规律求出平移后的解析式,再将点代入即可求得的值.【详解】解:直线向上平移3个单位长度,平移后的直线解析式为:.平移后经过,.故答案为:5.【点睛】本题考查的是一次函数的平移,解题的关键在于掌握平移的规律:左加右减,上加下减.17.(2023·河北·统考中考真题)如图,已知点,反比例函数图像的一支与线段有交点,写出一个符合条件的k的数值:_________.

【答案】4(答案不唯一,满足均可)【分析】先分别求得反比例函数图像过A、B时k的值,从而确定k的取值范围,然后确定符合条件k的值即可.【详解】解:当反比例函数图像过时,;当反比例函数图像过时,;∴k的取值范围为∴k可以取4.故答案为:4(答案不唯一,满足均可).【点睛】本题主要考查了求反比例函数的解析式,确定边界点的k的值是解答本题的关键.18.(2023·湖南郴州·统考中考真题)抛物线与轴只有一个交点,则________.【答案】9【分析】根据抛物线与轴只有一个交点,则判别式为0进行解答即可.【详解】解:∵抛物线与轴只有一个交点,∴解得c=9.故答案为:9.【点睛】本题考查二次函数与x轴交点问题,解题关键是理解抛物线与x轴有两个交点,则判别式;抛物线与x轴有一个交点,则判别式;抛物线与x轴没有交点,则判别式.19.(2023·山东烟台·统考中考真题)如图,在直角坐标系中,与轴相切于点为的直径,点在函数的图象上,为轴上一点,的面积为6,则的值为________.

【答案】24【分析】设,则,则,根据三角形的面积公式得出,列出方程求解即可.【详解】解:设,∵与轴相切于点,∴轴,∴,则点D到的距离为a,∵为的直径,∴,∴,解得:,故答案为:.【点睛】本题主要考查了切线的性质,反比例函数的图象和性质,解题的关键掌握切线的定义:经过半径外端且垂直于半径的直线是圆的切线,以及反比例函数图象上点的坐标特征.20.(2023·福建·统考中考真题)已知抛物线经过两点,若分别位于抛物线对称轴的两侧,且,则的取值范围是___________.【答案】【分析】根据题意,可得抛物线对称轴为直线,开口向上,根据已知条件得出点在对称轴的右侧,且,进而得出不等式,解不等式即可求解.【详解】解:∵,∴抛物线的对称轴为直线,开口向上,∵分别位于抛物线对称轴的两侧,假设点在对称轴的右侧,则,解得,∴∴点在点的右侧,与假设矛盾,则点在对称轴的右侧,∴解得:又∵,∴∴解得:∴,故答案为:.【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(2023·吉林长春·统考中考真题)甲、乙两个相约登山,他们同时从入口处出发,甲步行登山到山顶,乙先步行15分钟到缆车站,再乘坐缆车到达山顶.甲、乙距山脚的垂直高度y(米)与甲登山的时间x(分钟)之间的函数图象如图所示.(1)当时,求乙距山脚的垂直高度y与x之间的函数关系式;(2)求乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度.【答案】(1);(2)【分析】(1)待定系数法求解析式即可求解;(2)求得甲距山脚的垂直高度y与x之间的函数关系式为,联立,即可求解.【详解】(1)解:设乙距山脚的垂直高度y与x之间的函数关系式为,将,代入得,,解得:,∴;(2)设甲距山脚的垂直高度y与x之间的函数关系式为将点代入得,解得:,∴;联立解得:∴乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度为米【点睛】本题考查了一次函数的应用,熟练掌握待定系数法求解析式是解题的关键.22.(2023·河北·统考中考真题)在平面直角坐标系中,设计了点的两种移动方式:从点移动到点称为一次甲方式:从点移动到点称为一次乙方式.例、点P从原点O出发连续移动2次;若都按甲方式,最终移动到点;若都按乙方式,最终移动到点;若按1次甲方式和1次乙方式,最终移动到点.

(1)设直线经过上例中的点,求的解析式;并直接写出将向上平移9个单位长度得到的直线的解析式;(2)点P从原点O出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点.其中,按甲方式移动了m次.①用含m的式子分别表示;②请说明:无论m怎样变化,点Q都在一条确定的直线上.设这条直线为,在图中直接画出的图象;(3)在(1)和(2)中的直线上分别有一个动点,横坐标依次为,若A,B,C三点始终在一条直线上,直接写出此时a,b,c之间的关系式.【答案】(1)的解析式为;的解析式为;(2)①;②的解析式为,图象见解析;(3)【分析】(1)根据待定系数法即可求出的解析式,然后根据直线平移的规律:上加下减即可求出直线的解析式;(2)①根据题意可得:点P按照甲方式移动m次后得到的点的坐标为,再得出点按照乙方式移动次后得到的点的横坐标和纵坐标,即得结果;②由①的结果可得直线的解析式,进而可画出函数图象;(3)先根据题意得出点A,B,C的坐标,然后利用待定系数法求出直线的解析式,再把点C的坐标代入整理即可得出结果.【详解】(1)设的解析式为,把、代入,得,解得:,∴的解析式为;将向上平移9个单位长度得到的直线的解析式为;(2)①∵点P按照甲方式移动了m次,点P从原点O出发连续移动10次,∴点P按照乙方式移动了次,∴点P按照甲方式移动m次后得到的点的坐标为;∴点按照乙方式移动次后得到的点的横坐标为,纵坐标为,∴;②由于,∴直线的解析式为;函数图象如图所示:

(3)∵点的横坐标依次为,且分别在直线上,∴,设直线的解析式为,把A、B两点坐标代入,得,解得:,∴直线的解析式为,∵A,B,C三点始终在一条直线上,∴,整理得:;即a,b,c之间的关系式为:.【点睛】本题是一次函数和平移综合题,主要考查了平移的性质和一次函数的相关知识,正确理解题意、熟练掌握平移的性质和待定系数法求一次函数的解析式是解题关键.23.(2023·湖南常德·统考中考真题)如图所示,一次函数与反比例函数相交于点A和点.

(1)求m的值和反比例函数解析式;(2)当时,求x的取值范围.【答案】(1),;(2)或【分析】(1)根据一次函数的图象与反比例函数的图象交于、B两点可得的值,进而可求反比例函数的表达式;(2)观察函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【详解】(1)将点代入得:解得:将代入得:∴(2)由得:,解得所以的坐标分别为由图形可得:当或时,【点睛】本题考查了反比例函数与一次函数的交点问题,解决本题的关键是掌握反比例函数与一次函数的性质.24.(2023·湖南·统考中考真题)如图,点A的坐标是,点B的坐标是,点C为中点,将绕着点B逆时针旋转得到.

(1)反比例函数的图像经过点,求该反比例函数的表达式;(2)一次函数图像经过A、两点,求该一次函数的表达式.【答案】(1);(2)【分析】(1)由点B的坐标是,点C为中点,可得,,由旋转可得:,,可得,可得,从而可得答案;(2)如图,过作于,则,而,,证明,可得,,,设直线为,再建立方程组求解即可.【详解】(1)解:∵点B的坐标是,点C为中点,∴,,由旋转可得:,,∴,∴,∴反比例函数的表达式为;(2)如图,过作于,则,而,,

∴,∴,∴,∴,,∴,∴,设直线为,∴,解得:,∴直线为.【点睛】本题考查的是旋转的性质,利用待定系数法求解一次函数与反比例函数的解析式,全等三角形的判定与性质,熟练的求解是解本题的关键.25.(2023·浙江宁波·统考中考真题)如图,已知二次函数图象经过点和.

(1)求该二次函数的表达式及图象的顶点坐标.(2)当时,请根据图象直接写出x的取值范围.【答案】(1),顶点坐标为;(2)【分析】(1)把和代入,建立方程组求解解析式即可,再把解析式化为顶点式,可得顶点坐标;(2)把代入函数解析式求解的值,再利用函数图象可得时的取值范围.【详解】(1)解:∵二次函数图象经过点和.∴,解得:,∴抛物线为,∴顶点坐标为:;(2)当时,,∴解得:,,

如图,当时,∴.【点睛】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的顶点坐标,利用图象法解不等式,熟练的运用数形结合的方法解题是关键.26.(2023·河北·统考中考真题)嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m长.嘉嘉在点处将沙包(看成点)抛出,并运动路线为抛物线的一部分,淇淇恰在点处接住,然后跳起将沙包回传,其运动路线为抛物线的一部分.

(1)写出的最高点坐标,并求a,c的值;(2)若嘉嘉在x轴上方的高度上,且到点A水平距离不超过的范围内可以接到沙包,求符合条件的n的整数值.【答案】(1)的最高点坐标为,,;(2)符合条件的n的整数值为4和5【分析】(1)利用顶点式即可得到最高点坐标;点在抛物线上,利用待定系数法即可求得a的值;令,即可求得c的值;(2)求得点A的坐标范围为,求得n的取值范围,即可求解.【详解】(1)解:∵抛物线,∴的最高点坐标为,∵点在抛物线上,∴,解得:,∴抛物线的解析式为,令,则;(2)解:∵到点A水平距离不超过的范围内可以接到沙包,∴点A的坐标范围为,当经过时,,解得;当经过时,,解得;∴∴符合条件的n的整数值为4和5.【点睛】本题考查了二次函数的应用,联系实际,读懂题意,熟练掌握二次函数图象上点的坐标特征是解题的关键.27.(2023·浙江绍兴·统考中考真题)已知二次函数.(1)当时,①求该函数图象的顶点坐标.②当时,求的取值范围.(2)当时,的最大值为2;当时,的最大值为3,求二次函数的表达式.【答案】(1)①;②当时,;(2)【分析】(1)①将代入解析式,化为顶点式,即可求解;②已知顶点,根据二次函数的增减性,得出当时,有最大值7,当时取得最小值,即可求解;(2)根据题意时,的最大值为2;时,的最大值为3,得出抛物线的对称轴在轴的右侧,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论