2024年四川省隆昌市第一初级中学八年级数学第二学期期末达标检测模拟试题含解析_第1页
2024年四川省隆昌市第一初级中学八年级数学第二学期期末达标检测模拟试题含解析_第2页
2024年四川省隆昌市第一初级中学八年级数学第二学期期末达标检测模拟试题含解析_第3页
2024年四川省隆昌市第一初级中学八年级数学第二学期期末达标检测模拟试题含解析_第4页
2024年四川省隆昌市第一初级中学八年级数学第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年四川省隆昌市第一初级中学八年级数学第二学期期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.若顺次连接四边形ABCD各边的中点所得四边形是菱形.则四边形ABCD一定是()A.菱形 B.对角线互相垂直的四边形C.矩形 D.对角线相等的四边形2.以下列三个数据为三角形的三边,其中能构成直角三角形的是()A.2,3,4 B.4,5,6 C.5,12,13 D.5,6,73.如图,在▱ABCD中,BM是∠ABC的角平分线且交CD于点M,MC=2,▱ABCD的周长是16,则DM等于()A.1 B.2 C.3 D.44.如图,在正方形中,为边上一点,将沿折叠至处,与交于点,若,则的大小为()A. B. C. D.5.如图,平面直角坐标系中,已知A(2,2)、B(4,0),若在x轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.1 B.2 C.3 D.46.下列各组数中能作为直角三角形的三边长的是().A.1,,1 B.2,3,4 C.4,5,6 D.8,13,57.化简正确的是()A. B. C. D.8.下列各组数,不能作为直角三角形的三边长的是()A.3,4,5 B.1,1, C.2,3,4 D.6,8,109.如图,下列哪组条件不能判定四边形ABCD是平行四边形()A.AB∥CD,AB=CD B.AB∥CD,AD∥BCC.OA=OC,OB=OD D.AB∥CD,AD=BC10.关于x的不等式的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3 D.a≤3二、填空题(每小题3分,共24分)11.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8cm,正方形A的面积是10cm1,B的面积是11cm1,C的面积是13cm1,则D的面积为____cm1.12.如图,在平行四边形ABCD中,AB=,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.13.如图是一次函数的y=kx+b图象,则关于x的不等式kx+b>0的解集为.14.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为_____.15.计算:=_______.16.二项方程在实数范围内的解是_______________17.函数y=-x,在x=10时的函数值是______.18.若分式在实数范围内有意义,则x的取值范围是_____.三、解答题(共66分)19.(10分)如图,在中,,是延长线上一点,点是的中点。(1)实践与操作:①作的平分线;②连接并延长交于点,连接(尺规作图,保留作图痕迹,不写作法,在图中标明相应字母);(2)猜想与证明:猜想四边形的形状,并说明理由。20.(6分)已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.21.(6分)南江县在“创国家级卫生城市”中,朝阳社区计划对某区域进行绿化,经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.求甲、乙两工程队每天能完成绿化的面积是多少?22.(8分)如图,直角坐标系xOy中,一次函数y=-12x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2(1)求m的值及l2(2)求SΔAOC(3)一次函数y=kx+1的图象为l3,且l1,l2,l323.(8分)甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:平均数

众数

中位数

方差

8

8

0.4

9

3.2

(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差.(填“变大”、“变小”或“不变”).24.(8分)在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)试证明在旋转过程中,△MNO的边MN上的高为定值;(4)设△MBN的周长为p,在旋转过程中,p值是否发生变化?若发生变化,说明理由;若不发生变化,请给予证明,并求出p的值.25.(10分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.26.(10分)如图,已知直线与直线相交于点.(1)求、的值;(2)请结合图象直接写出不等式的解集.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据三角形的中位线定理得到EH∥FG,EF=FG,EF=BD,要是四边形为菱形,得出EF=EH,即可得到答案.【详解】解:∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,∴EH∥FG,EF=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=AC,EF=BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D.2、C【解析】

根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定即可.【详解】解:A、22+32≠42,故不能构成直角三角形;B、42+52≠62,故不能构成直角三角形;C、52+122=132,故能构成直角三角形;D、52+62≠72,故不能构成直角三角形.故选C.【点睛】本题考查勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3、D【解析】

根据BM是∠ABC的平分线和AB∥CD,求出BC=MC=2,根据▱ABCD的周长是16,求出CD=6,得到DM的长.【详解】解:∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是16,∴BC+CD=8,∴CD=6,则DM=CD﹣MC=4,故选:D.【点睛】本题考查的是平行四边形的性质和角平分线的定义,根据平行四边形的对边相等求出BC+CD是解题的关键,注意等腰三角形的性质的正确运用.4、B【解析】

首先利用正方形性质得出∠B=∠BCD=∠BAD=90°,从而得知∠ACB=∠BAC=45°,然后进一步根据三角形外角性质可以求出∠BEF度数,再结合折叠性质即可得出∠BAE度数,最后进一步求解即可.【详解】∵四边形ABCD为正方形,∴∠B=∠BCD=∠BAD=90°,∴∠ACB=∠BAC=45°,∵∠EFC=69°,∴∠BEF=∠EFC+∠ACB=114°,由折叠性质可得:∠BEA=∠BEF=57°,∴∠BAE=90°−57°=33°,∴∠EAC=45°−33°=12°,故选:B.【点睛】本题主要考查了正方形性质与三角形外角性质的综合运用,熟练掌握相关概念是解题关键.5、D【解析】

由点A、B的坐标可得到AB=2,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.【详解】∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=2,如图,①若AC=AB,以A为圆心,AB为半径画弧与x轴有2个交点(含B点),即(0,0)、(4,0),∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与x轴有2个交点,即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与x轴有1个交点,即满足△ABC是等腰三角形的C点有1个;综上所述:点C在x轴上,△ABC是等腰三角形,符合条件的点C共有4个.故选D.【点睛】本题主考查了等腰三角形的判定以及分类讨论思想的运用,分三种情况分别讨论,注意等腰三角形顶角的顶点在底边的垂直平分线上.6、A【解析】

根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】A选项:,故可以构成直角三角形;B选项:,故不能构成直角三角形;C选项:,故不能构成直角三角形;D选项:,故不能构成直角三角形;故选:A.【点睛】考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.7、D【解析】【分析】先根据二次根式有意义的条件确定出x<0,然后再根据二次根式的性质进行化简即可得答案.【详解】由题意可知x<0,所以=,故选D.【点睛】本题考查了二次根式的性质与化简,熟知二次根式的被开方数是非负数、熟练掌握二次根式的性质是解题的关键.8、C【解析】

根据勾股定理的逆定理,只需验证两较小边的平方和是否等于最长边的平方即可.【详解】A.3+4=25=5,故能构成直角三角形,故本选项错误;B.1+1=2=(),故能构成直角三角形,故本选项错误;C.2+3=13≠4,故不能构成直角三角形,故本选项正确;D.6+8=100=10,故能构成直角三角形,故本选项错误。故选C.【点睛】此题考查勾股定理的逆定理,解题关键在于掌握其定义9、D【解析】

平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【详解】根据平行四边形的判定,A、B、C均符合是平行四边形的条件,D则不能判定是平行四边形.故选D.【点睛】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.10、D【解析】分析:先解第一个不等式得到x>3,由于不等式组的解集为x>3,则利用同大取大可得到a的范围.详解:解不等式2(x-1)>4,得:x>3,解不等式a-x<0,得:x>a,∵不等式组的解集为x>3,∴a≤3,故选D.点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.二、填空题(每小题3分,共24分)11、30【解析】

根据正方形的面积公式,运用勾股定理可得结论:四个小正方形的面积之和等于最大的正方形的面积64cm1,问题即得解决.【详解】解:如图记图中三个正方形分别为P、Q、M.

根据勾股定理得到:A与B的面积的和是P的面积;C与D的面积的和是Q的面积;而P、Q的面积的和是M的面积.

即A、B、C、D的面积之和为M的面积.

∵M的面积是81=64,∴A、B、C、D的面积之和为64,设正方形D的面积为x,∴11+10+13+x=64,

∴x=30,故答案为30.【点睛】本题主要考查勾股定理,把正方形的面积转化为相关直角三角形的边长,再通过勾股定理探索图形面积的关系是解决此类问题常见的思路.12、3.【解析】试题分析:点B恰好与点C重合,且四边形ABCD是平行四边形,根据翻折的性质,则AE⊥BC,BE=CE=3,在Rt△ABE中,由勾股定理得.故答案为3.考点:3.翻折变换(折叠问题);3.勾股定理;3.平行四边形的性质.13、x>﹣1.【解析】试题分析:根据一次函数的图像可知y随x增大而增大,因此可知不等式的解集为x>-1.考点:一次函数与一元一次不等式14、(﹣,1)【解析】如图作AF⊥x轴于F,CE⊥x轴于E.∵四边形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴点C坐标(﹣,1),故答案为(,1).点睛:本题考查正方形的性质、全等三角形的判定和性质等知识,坐标与图形的性质,解题的关键是学会添加常用的辅助线,构造全等三角形解决问题,属于中考常考题型.注意:距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.15、3【解析】

先把化成,然后再合并同类二次根式即可得解.【详解】原式=2.故答案为【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.16、x=-1【解析】

由2x1+54=0,得x1=-27,解出x值即可.【详解】由2x1+54=0,得x1=-27,∴x=-1,故答案为:x=-1.【点睛】本题考查了立方根,正确理解立方根的意义是解题的关键.17、-1【解析】

将函数的自变量的值代入函数解析式计算即可得解.【详解】解:当时,y=-=-=-1.故答案为:-1.【点睛】本题考查了一次函数图象上点的坐标特征,准确计算即可,比较简单.18、x≠1【解析】

分式有意义的条件是分母不等于零.【详解】∵分式在实数范围内有意义,∴x−1≠0,解得:x≠1.故答案为:x≠1.【点睛】此题考查分式有意义的条件,解题关键在于分母不等于零使得分式有意义.三、解答题(共66分)19、(1)①见解析,②见解析;(2)四边形是平行四边形,见解析.【解析】

(1)根据角平分线的做法即可求解;(2)根据等腰三角形的性质及角平分线的性质证明,即可求证.【详解】(1)①作图正确并有轨迹。②连接并延长交于点,连接;(2)解:四边形是平行四边形,理由如下:∵,∴,∴,即,∵平分,∴,∴,∴,∵点时中点,∴,在与中∴∴四边形是平行四边形。【点睛】此题主要考查平行四边形的判定,解题的关键是熟知角平分线的做法及全等三角形的判定判断与性质.20、(1)见解析;(2)6【解析】

(1)过D作DE⊥AB于E,依据角平分线的性质,即可得到DE=CD,再根据含30°角的直角三角形的性质,即可得出结论;

(2)依据AD=BD=2CD=4,即可得到Rt△ACD中,,再根据△ABD的面积=进行计算即可.【详解】解:(1)如图,过D作DE⊥AB于E,

∵∠C=90°,AD是△ABC的角平分线,

∴DE=CD,

又∵∠B=30°,

∴Rt△BDE中,DE=BD,

∴BD=2DE=2CD;(2)∵∠C=90°,∠B=30°,AD是△ABC的角平分线,

∴∠BAD=∠B=30°,

∴AD=BD=2CD=4,

∴Rt△ACD中,AC=,∴△ABD的面积为.【点睛】本题主要考查了直角三角形的性质以及勾股定理的运用,利用角平分线的的性质是解决问题的关键.21、甲、乙两工程队每天能完成绿化的面积分别是100m1、50m1.【解析】

设乙工程队每天能完成绿化的面积是xm1,根据在独立完成面积为400m1区域的绿化时,甲队比乙队少用4天,列方程求解即可.【详解】设乙工程队每天能完成绿化的面积是x(m1),根据题意得,解得:x=50,经检验:x=50是原方程的解,且符合实际意义,所以甲工程队每天能完成绿化的面积是50×1=100(m1),答:甲、乙两工程队每天能完成绿化的面积分别是100m1、50m1.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.22、(1)y=2x;(2)4(4:1);(3)32或2或-【解析】

(1)先求得点C的坐标,再运用待定系数法即可得到l2(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,再根据A(10,0),B(0,5),可得AO=10,(3)分三种情况:当l3经过点C(2,4)时,k=32;当l2,l3平行时,k=2;当11,l3平行时,k=-【详解】解:(1)把C(m,4)代入一次函数y=-14=-1解得m=2,∴C(2,4设l2的解析式为y=ax,则4=2a解得a=2,∴l2的解析式为(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,y=-12x+5,令x=0,则y=5;令y=0∴A(10,0),∴AO=10,BO=5,∴S

(3)一次函数y=kx+1的图象为l3,且11,l2∴当l3经过点C(2,4)当l2,l3平行时,当11,l3平行时,故k的值为32或2或-【点睛】本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.23、(1)填表见解析;(2)理由见解析;(3)变小.【解析】

(1)根据众数、平均数和中位数的定义求解:(2)方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.(3)根据方差公式求解:如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.【详解】试题分析:试题解析:解:(1)甲的众数为8,乙的平均数=(5+9+7+10+9)=8,乙的中位数为9.故填表如下:平均数

众数

中位数

方差

8

8

8

0.4

8

9

9

3.2

(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛;(3)如果乙再射击1次,命中8环,平均数不变,根据方差公式可得乙的射击成绩的方差变小.考点:1.方差;2.算术平均数;3.中位数;4.众数.24、(1)OA在旋转过程中所扫过的面积为0.5π;(1)旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为25°-11.5°=11.5度;(3)MN边上的高为1(2)在旋转正方形OABC的过程中,p值无变化.见解析.【解析】

(1)过点M作MH⊥y轴,垂足为H,如图1,易证∠MOH=25°,然后运用扇形的面积公式就可求出边OA在旋转过程中所扫过的面积.

(1)根据正方形和平行线的性质可以得到AM=CN,从而可以证到△OAM≌△OCN.进而可以得到∠AOM=∠CON,就可算出旋转角∠HOA的度数.

(3)过点O作OF⊥MN,垂足为F,延长BA交y轴于E点,如图1,易证△OAE≌△OCN,从而得到OE=ON,AE=CN,进而可以证到△OME≌△OMN,从而得到∠OME=∠OMN,然后根据角平分线的性质就可得到结论.

(2)由△OME≌△OMN(已证)可得ME=MN,从而可以证到MN=AM+CN,进而可以推出p=AB+BC=2,是定值.【详解】解:(1)过点M作MH⊥y轴,垂足为H,如图1,

∵点M在直线y=x上,

∴OH=MH.

在Rt△OHM中,

∵tan∠MOH==1,

∴∠MOH=25°.

∵A点第一次落在直线y=x上时停止旋转,

∴OA旋转了25°.

∵正方形OABC的边长为1,

∴OA=1.

∴OA在旋转过程中所扫过的面积为=0.5π.∵A点第一次落在直线y=x上时停止旋转,∴OA旋转了25度.∴OA在旋转过程中所扫过的面积为0.5π.(1)∵MN∥AC,∴∠BMN=∠BAC=25°,∠BNM=∠BCA=25度.∴∠BMN=∠BNM.BM=BN.又∵BA=BC,AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON.∴∠AOM=1/1(90°-25°)=11.5度.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为25°-11.5°=11.5度.(3)证明:过点O作OF⊥MN,垂足为F,延长BA交y轴于E点,如图1,

则∠AOE=25°-∠AOM,∠CON=90°-25°-∠AOM=25°-∠AOM.

∴∠AOE=∠CON.

在△OAE和△OCN中,

∴△OAE≌△OCN(ASA).

∴OE=ON,AE=CN.

在△OME和△OMN中∴△OME≌△OMN(SAS).

∴∠OME=∠OMN.

∵MA⊥OA,MF⊥OF,

∴OF=OA=1.

∴在旋转过程中,△MNO的边MN上的高为定值.MN边上的高为1;(2)在旋转正方形OABC的过程中,p值不变化.

证明:延长BA交y轴于E点,则∠AOE=25°-∠AOM,∠CON=90°-25°-∠AOM=25°-∠AOM,∴∠AOE=∠CO

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论