2024年广东省佛山市南海区石门实验中学八年级下册数学期末质量跟踪监视试题含解析_第1页
2024年广东省佛山市南海区石门实验中学八年级下册数学期末质量跟踪监视试题含解析_第2页
2024年广东省佛山市南海区石门实验中学八年级下册数学期末质量跟踪监视试题含解析_第3页
2024年广东省佛山市南海区石门实验中学八年级下册数学期末质量跟踪监视试题含解析_第4页
2024年广东省佛山市南海区石门实验中学八年级下册数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年广东省佛山市南海区石门实验中学八年级下册数学期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知四边形是平行四边形,、分别为和边上的一点,增加以下条件不能得出四边形为平行四边形的是()A. B. C. D.2.下列四组线段中,能组成直角三角形的是A.,, B.,,C.,, D.,,3.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A. B. C. D.4.四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是()A.AB=CD B.AC=BD C.AC⊥BD D.AD=BC5.下列各组数中不能作为直角三角形三边长的是()A.5,13,12 B.3,1,2 C.6,7,10 D.3,4,56.如图,在矩形中,,,点是边上一点,点是矩形内一点,,则的最小值是()A.3 B.4 C.5 D.7.如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是()A.3cm B.4cm C.5cm D.6cm8.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.2,3,4 C.3,4,5 D.1,,9.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,AB=6cm,BC=8cm,则△AEF的周长是()A.14cm B.8cm C.9cm D.10cm10.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为A.15°或30° B.30°或45° C.45°或60° D.30°或60°二、填空题(每小题3分,共24分)11.甲、乙两家人,相约周末前往中梁国际慢城度周末,甲、乙两家人分别从上桥和童家桥驾车同时出发,匀速前进,且甲途经童家桥,并以相同的线路前往中梁国际慢城.已知乙的车速为30千米/小时,设两车之间的里程为y(千米),行驶时间为x(小时),图中的折线表示从两家人出发至甲先到达终点的过程中y(千米)与x(小时)的函数关系,根据图中信息,甲的车速为_______千米/小时.12.将正方形A1B1C1O,A2B2C2C1,A3B3C3C2按如图所示方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线和x轴上,则点B2019的横坐标是______.13.已知在等腰梯形中,,,对角线,垂足为,若,,梯形的高为______.14.命题”两条对角线相等的平行四边形是矩形“的逆命题是_____.15.点A(-1,y1),B(3,y2)是直线y=-4x+3图象上的两点,则y1______y2(填“>”或“<”).16.直线过第_________象限,且随的增大而_________.17.如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是__.18.分解因式:﹣2x2y+16xy﹣32y=.三、解答题(共66分)19.(10分)关于x的方程x2+(2k+1)x+k2﹣1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)若k为负整数,求此时方程的根.20.(6分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?21.(6分)在▱ABCD中,点E为AB边的中点,连接CE,将△BCE沿着CE翻折,点B落在点G处,连接AG并延长,交CD于F.(1)求证:四边形AECF是平行四边形;(2)若CF=5,△GCE的周长为20,求四边形ABCF的周长.22.(8分)如图,A,B是直线y=x+4与坐标轴的交点,直线y=-2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)点D是折线A—B—C上一动点.①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.②是否存在点D,使△ACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由23.(8分)如图,在△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.求证:CD=EF.24.(8分)阅读下列一段文字,然后回答下列问题.已知在平面内有两点、,其两点间的距离,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为或.(1)已知、,试求A、B两点间的距离______.已知M、N在平行于y轴的直线上,点M的纵坐标为4,点N的纵坐标为-1,试求M、N两点的距离为______;(2)已知一个三角形各顶点坐标为、、,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x轴上找一点P,使的长度最短,求出点P的坐标及的最短长度.25.(10分)如图,,,.求证:四边形是平行四边形.26.(10分)已知:如图1,在平面直角坐标系中,直线与坐标轴分别相交于点,与直线相交于点.(1)求点的坐标;(2)若平行于轴的直线交于直线于点,交直线于点,交轴于点,且,求的值;(3)如图2,点是第四象限内一点,且,连接,探究与之间的位置关系,并证明你的结论.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

逐项根据平行四边形的判定进行证明即可解题.【详解】解:∵四边形是平行四边形,∴AB∥CD,AD∥BC,∠A=∠C,∠ABC=∠ADC,AB=CD,AD=BC,A.若,易证ED=BF,∵ED∥BF,∴四边形为平行四边形,B.若,由于条件不足,无法证明四边形为平行四边形,C.若,∴,易证△ABE≌△CDF,∴AE=CF,接下来的证明步骤同选项A,D.若,易证△ABE≌△CDF,∴AE=CF,接下来的证明步骤同选项A,故选B【点睛】本题考查了平行四边形的判定与性质,可以针对各种平行四边形的判定方法,给出条件,本题可通过构造条件证△AEB≌△CFD来解题.2、D【解析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.1²+2²≠3²,故不是直角三角形,故本选项错误;

B.2²+3²≠4²故不是直角三角形,故本选项错误;

C.2²+4²≠5²,故不是直角三角形,故本选项错误;

D.3²+4²=5²,故是直角三角形,故本选项正确.

故选D.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3、B【解析】

观察所给程序的运算过程,根据前两次运算结果小于或等于95、第三次运算结果大于95,列出关于x的不等式组;先求出不等式组中三个不等式的解集,再取三个不等式的解集的公共部分,即为不等式组的解集.【详解】由题意可得,解不等式①得,x≤47,解不等式②得,x≤1,解不等式③得,x>11,故不等式组的解集为11<x≤1.故选B.【点睛】此题考查一元一次不等式的应用,关键是根据“操作进行了三次才停止”列出满足题意的不等式组;4、C【解析】

由已知条件得出四边形ABCD是平行四边形,再由对角线互相垂直,即可得出四边形ABCD是菱形.【详解】如图所示:需要添加的条件是AC⊥BD;理由如下:

∵四边形ABCD的对角线互相平分,

∴四边形ABCD是平行四边形,

∵AC⊥BD,

∴平行四边形ABCD是菱形(对角线互相垂直的平行四边形是菱形);

故选:C.【点睛】考查了平行四边形的判定方法、菱形的判定方法;熟练掌握平行四边形和菱形的判定方法,并能进行推理论证是解决问题的关键.5、C【解析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、52+122=132,故不是直角三角形,故选项正确;B、32+12=22,故是直角三角形,故选项错误;C、62+72≠102,故是直角三角形,故选项错误;D、32+42=52,故是直角三角形,故选项错误.故选:C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6、A【解析】

过点F作FH⊥BC,将的最小值转化为求EF+FH的最小值,易得答案.【详解】解:过点F作FH⊥BC,∵,∴在Rt△FHC中,FH=,∴的最小值即EF+FH的最小值,∴当E,F,H三点共线时,EF+FH取最小值,最小值为AB的长度3,即的最小值为3,故选A.【点睛】本题主要考查了含30°直角三角形的性质,通过作辅助线将所求线段进行转化是解题关键.7、A【解析】分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.详解:设CN=xcm,则DN=(8﹣x)cm,由折叠的性质知EN=DN=(8﹣x)cm,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=1.故选:A.点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.8、C【解析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.4+5≠6,不能构成直角三角形,故不符合题意;B.2+3≠4,不能构成直角三角形,故不符合题意;C.3+4=5,能构成直角三角形,故符合题意;D.1+()≠(),不能构成直角三角形,故不符合题意。故选C.【点睛】此题考查勾股定理的逆定理,解题关键在于利用勾股定理进行计算9、C【解析】

利用勾股定理列式求出AC,再根据矩形的对角线互相平分且相等求出OA=OD=AC,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得EF=OD,再求出AF,AE,然后根据三角形的周长公式列式计算即可得解.【详解】由勾股定理得,AC==10cm∵四边形ABCD是矩形∴OA=OD=AC=×10=5cm∵点E、F分别是AO、AD的中点∴EF=OD=cmAF=×8=4cmAE=OA=cm∴△AEF的周长=+4+=9cm.故选C.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,矩形的性质,勾股定理,熟记定理与性质是解题的关键.10、D【解析】试题分析:∵四边形ABCD是菱形,∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,∵∠BAD=120°,∴∠ABC=180°﹣∠BAD=180°﹣120°=60°,∴∠ABD=30°,∠BAC=60°.∴剪口与折痕所成的角a的度数应为30°或60°.考点:剪纸问题二、填空题(每小题3分,共24分)11、1【解析】

根据题意和函数图象可知,甲小时行驶的路程=乙小时行驶的路程+10,从而可以求得甲的车速.【详解】解:由题意可得,

甲的车速为:千米/小时,

故答案为1.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.12、.【解析】

利用一次函数图象上点的坐标特征及正方形的性质可得出点B1,B2,B3,B4,B5的坐标,根据点的坐标的变化可找出变化规律“点Bn的坐标为(2n-1,2n-1)(n为正整数)”,再代入n=2019即可得出结论.【详解】当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵四边形A1B1C1O为正方形,∴点B1的坐标为(1,1),点C1的坐标为(1,0).当x=1时,y=x+1=2,∴点A1的坐标为(1,2).∵A2B2C2C1为正方形,∴点B2的坐标为(3,2),点C2的坐标为(3,0).同理,可知:点B3的坐标为(7,4),点B4的坐标为(15,8),点B5的坐标为(31,16),…,∴点Bn的坐标为(2n-1,2n-1)(n为正整数),∴点B2019的坐标为(22019-1,22018).故答案为22019-1.【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“点Bn的坐标为(2n-1,2n-1)(n为正整数)”是解题的关键.13、【解析】

过作交的延长线于,构造.首先求出是等腰直角三角形,从而推出与的关系.【详解】解:如图:过作交的延长线于,过作于.,,四边形是平行四边形,,,等腰梯形中,,,,,,是等腰直角三角形,,又,,即梯形的高为.故答案为:.【点睛】本题考查了等腰梯形性质,作对角线的平行线将上下底和对角线移到同一个三角形中是解题的关键,也是梯形辅助线常见作法.14、矩形是两条对角线相等的平行四边形.【解析】

把命题的条件和结论互换就得到它的逆命题.【详解】命题”两条对角线相等的平行四边形是矩形“的逆命题是矩形是两条对角线相等的平行四边形,故答案为矩形是两条对角线相等的平行四边形.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.15、y1>y2【解析】∵在中,,∴在函数中,y随x的增大而减小.又∵,∴,即空格处应填“>”.16、【解析】

根据一次函数的性质解答即可.【详解】解:∵-2<0,1>0,∴直线过第一、二、四象限,且随的增大而减小,故答案为:一、二、四;减小.【点睛】本题考查了一次函数的性质,熟知一次函数、为常数,是一条直线,当,图象经过第一、三象限,随的增大而增大;当,图象经过第二、四象限,随的增大而减小是解答此题的关键.17、(9,0)【解析】

根据位似图形的定义,连接A′A,B′B并延长交于(9,0),所以位似中心的坐标为(9,0).故答案为:(9,0).18、﹣2y(x﹣4)2【解析】试题分析:根据提取公因式以及完全平方公式即可求出:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为﹣2y(x﹣4)2考点:因式分解三、解答题(共66分)19、(1);(2)x1=0,x2=1.【解析】

(1)由方程有两个不相等的实数根知△>0,据此列出关于k的不等式,解之可得;(2)由所得k的范围,结合k为负整数得出k的值,代入方程,再利用因式分解法求解可得.【详解】(1)由题意,得△.解得.(2)∵k为负整数,∴.则方程为.解得,.【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=4k+5>0;(2)将k=-1代入原方程,利用因式分解法解方程.20、(1)当天该水果的销售量为2千克;(2)如果某天销售这种水果获利150元,该天水果的售价为3元.【解析】

(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润每千克利润销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+1.当x=23.5时,y=﹣2x+1=2.答:当天该水果的销售量为2千克.(2)根据题意得:(x﹣20)(﹣2x+1)=150,解得:x1=35,x2=3.∵20≤x≤32,∴x=3.答:如果某天销售这种水果获利150元,那么该天水果的售价为3元.【点睛】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.21、(1)见解析;(2)1【解析】

(1)由平行四边形的性质得出AE∥FC,再由三角形的外角的性质,以及折叠的性质,可以证明∠FAE=∠CEB,进而证明AF∥EC,即可得出结论;(2)由折叠的性质得:GE=BE,GC=BC,由△GCE的周长得出GE+CE+GC=20,BE+CE+BC=20,由平行四边形的性质得出AF=CE,AE=CF=5,即可得出结果.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AE∥FC,∵点E是AB边的中点,∴AE=BE,∵将△BCE沿着CE翻折,点B落在点G处,∴BE=GE,∠CEB=∠CEG,∴AE=GE,∴∠FAE=∠AGE,∵∠CEB=∠CEG=∠BEG,∠BEG=∠FAE+∠AGE,∴∠FAE=∠BEG,∴∠FAE=∠CEB,∴AF∥EC,∴四边形AECF是平行四边形;(2)解:由折叠的性质得:GE=BE,GC=BC,∵△GCE的周长为20,∴GE+CE+GC=20,∴BE+CE+BC=20,∵四边形AECF是平行四边形,∴AF=CE,AE=CF=5,∴四边形ABCF的周长=AB+BC+CF+AF=AE+BE+BC+CE+CF=5+20+5=1.【点睛】本题主要考查了翻折变换的性质、平行四边形的判定与性质、平行线的判定、等腰三角形的性质以及三角形的外角性质等知识;熟练掌握翻折变换的性质,证明四边形AECF是平行四边形是解题的关键.22、(1)A(-4,0);B(0,4);C(2,0);(2)①点E的位置见解析,E(,0);②D点的坐标为(-1,3)或(,)【解析】

(1)先利用一次函数图象上点的坐标特点求得点A、B的坐标;然后把B点坐标代入y=−2x+b求出b的值,确定此函数解析式,然后再求C点坐标;

(2)①根据轴对称—最短路径问题画出点E的位置,由待定系数法确定直线DB1的解析式为y=−3x−4,易得点E的坐标;

②分两种情况:当点D在AB上时,当点D在BC上时.当点D在AB上时,由等腰直角三角形的性质求得D点的坐标为(−1,3);当点D在BC上时,设AD交y轴于点F,证△AOF与△BOC全等,得OF=2,点F的坐标为(0,2),求得直线AD的解析式为,与y=−2x+4组成方程组,求得交点D的坐标为(,).【详解】(1)在y=x+4中,令x=0,得y=4,令y=0,得x=-4,∴A(-4,0),B(0,4)把B(0,4)代入y=-2x+b,得b=4,∴直线BC为:y=-2x+4在y=-2x+4中,令y=0,得x=2,∴C点的坐标为(2,0);(2)①如图∵点D是AB的中点∴D(-2,2)点B关于x轴的对称点B1的坐标为(0,-4),设直线DB1的解析式为,把D(-2,2),B1(0,-4)代入,得,解得k=-3,b=-4,∴该直线为:y=-3x-4,令y=0,得x=,∴E点的坐标为(,0).②存在,D点的坐标为(-1,3)或(,).当点D在AB上时,∵OA=OB=4,∴∠BAC=45°,∴△ACD是以∠ADC为直角的等腰直角三角形,∴点D的横坐标为,当x=-1时,y=x+4=3,∴D点的坐标为(-1,3);当点D在BC上时,如图,设AD交y轴于点F.∵∠FAO+∠AFO=∠CBO+∠BFD,∠AFO=∠BFD,∴∠FAO=∠CBO,又∵AO=BO,∠AOF=∠BOC,∴△AOF≌△BOC(ASA)∴OF=OC=2,∴点F的坐标为(0,2),设直线AD的解析式为,将A(-4,0)与F(0,2)代入得,解得,∴,联立,解得:,∴D的坐标为(,).综上所述:D点的坐标为(-1,3)或(,)【点睛】本题是一次函数的综合题,难度适中,考查了利用待定系数法求一次函数的解析式、轴对称的最短路径问题、直角三角形问题,第(2)②题采用了分类讨论的思想,与三角形全等结合,解题的关键是灵活运用一次函数的图象与性质以及全等的知识.23、根据直角三角形的性质可得,再根据中位线定理可得,问题得证.【解析】根据直角三角形斜边中中线等于斜边的一半可得,再根据中位线定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论