版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆沙湾县2024届八年级下册数学期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.目前,随着制造技术的不断发展,手机芯片制造即将进入(纳米)制程时代.已知,则用科学记数法表示为()A. B. C. D.2.如图,在菱形ABCD中,一动点P从点B出发,沿着B→C→D→A的方向匀速运动,最后到达点A,则点P在匀速运动过程中,△APB的面积y随时间x变化的图象大致是()A. B.C. D.3.如图,,,点在边上(与、不重合),四边形为正方形,过点作,交的延长线于点,连接,交于点,对于下列结论:①;②四边形是矩形;③.其中正确的是()A.①②③ B.①② C.①③ D.②③4.已知一次函数y=kx﹣1,若y随x的增大而减小,则它的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限5.不等式组12(x+2)-3>0x>m的解集是x>4A.m≤4 B.m<4 C.m≥4 D.m>46.平行四边形边长为和,其中一内角平分线把边长分为两部分,这两部分是()A.和 B.和 C.和 D.和7.点(1,m)为直线上一点,则OA的长度为A.1 B. C. D.8.已知张强家、体育场、文具店在同一直线上.如图的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x表示时间,y表示张强离家的距离.则下列说法错误的是()A.体育场离张强家2.5千米B.体育场离文具店1千米C.张强在文具店逗留了15分钟D.张强从文具店回家的平均速度是千米/分9.如图所示,将矩形ABCD纸对折,设折痕为MN,再把B点叠在折痕线MN上,(如图点B’),若,则折痕AE的长为()A. B. C.2 D.10.下列计算正确的是A. B. C. D.二、填空题(每小题3分,共24分)11.在某班的50名学生中,14岁的有2人,15岁的有36人,16岁的有12人,则这个班学生的平均年龄是______.12.已知直线y=﹣3x+b与直线y=﹣kx+1在同一坐标系中交于点,则关于x的方程﹣3x+b=﹣kx+1的解为x=_____.13.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x>3时,y1<y2中.则正确的序号有____________.14.频数直方图中,一小长方形的频数与组距的比值是6,组距为3,则该小组的频数是_____.15.从一副扑克牌中任意抽取1张:①这张牌是“A”;②这张牌是“红心”;③这张牌是“大王”.其中发生的可能性最大的事件是_____.(填序号)16.如图,在中,,分别是的中点,且,延长到点,使,连接,若四边形是菱形,则______17.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1_____S2;(填“>”或“<”或“=”)18.平行四边形的面积等于,两对角线的交点为,过点的直线分别交平行四边形一组对边、于点、,则四边形的面积等于________。三、解答题(共66分)19.(10分)在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若DE=BC,试判断四边形BFCE是怎样的四边形,并证明你的结论.20.(6分)如图(1)是超市的儿童玩具购物车,图(2)为其侧面简化示意图,测得支架AC=24cm,CB=18cm,两轮中心的距离AB=30cm,求点C到AB的距离.(结果保留整数)21.(6分)解不等式组,并将不等式组的解集在下面的数轴上表示出来:.22.(8分)如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交于y轴于点H.(1)连接BM,动点P从点A出发,沿折线ABC方向以1个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(2)在(1)的情况下,当点P在线段AB上运动时,是否存在以BM为腰的等腰三角形BMP?如存在,求出t的值;如不存在,请说明理由.23.(8分)(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.(拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.(应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)24.(8分)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,求汽车原来的平均速度.25.(10分)如图所示,四边形ABCD是平行四边形,已知DE平分∠ADC,交AB于点E,过点E作EF∥AD,交DC于F,求证:四边形AEFD是菱形.26.(10分)学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:,.故选:.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2、D【解析】
分析动点P在BC、CD、DA上时,△APB的面积y随x的变化而形成变化趋势即可.【详解】解:当点P沿BC运动时,△APB的面积y随时间x变化而增加,当点P到CD上时,△APB的面积y保持不变,当P到AD上时,△APB的面积y随时间x增大而减少到1.故选:D.【点睛】本题为动点问题的图象探究题,考查了函数问题中函数随自变量变化而变化的关系,解答时注意动点到达临界点前后函数图象的变化.3、A【解析】
由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;由△AFG≌△DAC,推出四边形BCGF是矩形,②正确;由矩形的性质和相似三角形的判定定理证出△ACD∽△FEQ,③正确.【详解】解:①∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG.故正确;②∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形.故正确;③∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ.故正确.综上所述,正确的结论是①②③.故选A.【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.4、D【解析】
先根据一次函数y=kx﹣1中,y随x的增大而减小判断出k的符号,再根据一次函数的性质判断出此函数的图象所经过的象限,进而可得出结论.【详解】解:∵一次函数y=kx﹣1中,y随x的增大而减小,∴k<0,∴此函数图象必过二、四象限;∵b=﹣1<0,∴此函数图象与y轴相交于负半轴,∴此函数图象经过二、三、四象限.故选:D.【点睛】本题主要考查一次函数的图象与性质,掌握一次函数的图象与性质是解题的关键.5、A【解析】
求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,结合不等式组的解集即可得答案.【详解】解不等式12(x+2)﹣3>0,得:x>4由不等式组的解集为x>4知m≤4,故选A.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键6、C【解析】
作出草图,根据角平分线的定义求出∠BAE=45°,然后判断出△ABE是等腰直角三角形,然后求出BE=AB,再求出CE即可得解.【详解】解:如图,∵AE平分∠BAD,
∴∠BAE=45°,
又∵∠B=90°,
∴△ABE是等腰直角三角形,
∴BE=AB=10cm,
∴CE=BC-AB=15-10=5cm,
即这两部分的长为5cm和10cm.
故选:C.【点睛】本题考查了矩形的性质,角平分线的定义,熟记性质判断出△ABE是等腰直角三角形是解题的关键.7、C【解析】
根据题意可以求得点A的坐标,从而可以求得OA的长.【详解】【∵点A(1,m)为直线y=2x-1上一点,∴m=2×1-1,解得,m=1,∴点A的坐标为(1,1),故故选:C.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质和勾股定理解答.8、C【解析】
(1)因为张强从就家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离张强家的距离;(2)张强从体育场到文具店的递减函数,此段函数图象的最高点与最低点纵坐标的差为张强家到文具店的距离;(3)中间一段与x轴平行的线段是张强在图书馆停留的时间;(4)先求出张强家离文具店的距离,再求出从文具店到家的时间,最后求出二者的比值即可.【详解】解:(1)由函数图象可知,体育场离张强家2.5千米,从家到体育场用了15分;
(2)由函数图象可知,张强家离文具店1.5千米,离体育场2.5千米,所以体育场离文具店1千米;
(3)张强在文具店停留了分;
(4)从图象可知:文具店离张强家1.5千米,张强从文具店散步走回家花了分,
∴张强从文具店回家的平均速度是千米/分.【点睛】本题考查的是函数图象,正确理解函数图象横纵坐标表示的意义是解答此题的关键.9、C【解析】
先作辅助线,然后根据折叠的性质和解直角三角形计算.【详解】延长EB′与AD交于点F,∵∠AB′E=∠B=90°,MN是对折折痕,∴EB′=FB′,∠AB′E=∠AB′F,在△AEB′和△AFB′中,,∴△AEB′≌△AFB′,∴AE=AF,∴∠B′AE=∠B′AD(等腰三角形三线合一),故根据题意,易得∠BAE=∠B′AE=∠B′AD;故∠EAB=30°,∴EB=EA,设EB=x,AE=2x,∴(2x)2=x2+AB2,x=1,∴AE=2,则折痕AE=2,故选C.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.10、A【解析】A.,故正确;B.,故不正确;C.,故不正确;D.,故不正确;故选A.二、填空题(每小题3分,共24分)11、15.2岁【解析】
直接利用平均数的求法得出答案.【详解】解:∵在某班的50名学生中,14岁的有2人,15岁的有36人,16岁的有12人,∴这个班学生的平均年龄是:(14×2+15×36+16×12)=(岁).故答案为:岁.【点睛】此题主要考查了求平均数,正确掌握平均数的公式是解题关键.12、1【解析】
由题意可知当x=1时,函数y=﹣1x+b的值与函数y=﹣kx+1的值相等,由此即可得答案.【详解】∵直线y=﹣1x+b与直线y=﹣kx+1在同一坐标系中交于点,∴当x=1时,函数y=﹣1x+b的值与函数y=﹣kx+1的值相等,∴关于x的方程﹣1x+b=﹣kx+1的解为x=1,故答案为:1.【点睛】本题考查了一次函数与一元一次方程,熟知两条直线交点的横坐标使两个函数的值相等是解题的关键.13、①③④【解析】
根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x>3时,相应的x的值,y1图象均低于y2的图象.【详解】根据图示及数据可知:
①k<0正确;
②a<0,原来的说法错误;
③方程kx+b=x+a的解是x=3,正确;
④当x>3时,y1<y2正确.
故答案是:①③④.【点睛】考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.14、1【解析】
根据“频数:组距=2且组距为3”可得答案.【详解】根据题意知,该小组的频数为2×3=1.故答案为:1.【点睛】本题考查了频数分布直方图,解题的关键是根据题意得出频数:组距=2.15、②【解析】
根据可能性等于所求情况与总数情况之比即可解题.【详解】解:一副扑克一共有54张扑克牌,A一共有4张,∴这张牌是“A”的概率是,这张牌是“红心”的概率是,这张牌是“大王”的概率是,∴其中发生的可能性最大的事件是②.【点睛】本题考查了简单的概率计算,属于简单题,熟悉概率公式是解题关键.16、2或2;【解析】
根据等面积法,首先计算AC边上的高,再设AD的长度,列方程可得x的值,进而计算AB.【详解】根据可得为等腰三角形分别是的中点,且四边形是菱形所以可得中AC边上的高为:设AD为x,则CD=所以解得x=或x=故答案为2或2【点睛】本题只要考查菱形的性质,关键在于设合理的未知数求解方程.17、=【解析】
利用矩形的性质可得△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,进而求出答案.【详解】解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,∴S1=S1.故答案为:=.【点睛】本题考查了矩形的性质,熟练掌握矩形的性质定理是解题关键.18、【解析】
根据“过平行四边形对角线的交点的直线将平行四边形等分为两部分”解答即可.【详解】如图平行四边形ABCD,∵四边形ABCD是平行四边形,∴OD=OB,OA=OC,则可得:△DF0≌△BEO,△ADO≌△CBO,△CF0≌△AEO,∴直线l将四边形ABCD的面积平分.∵平行四边形ABCD的面积等于10cm2,∴四边形AEFD的面积等于5cm2,故答案为:5cm2【点睛】本题考查了中心对称,全等三角形的判定与性质,解答本题的关键在于举例说明,利用全等的知识解决.三、解答题(共66分)19、见解析【解析】分析:(1)由已知条件易得∠CED=∠BFD,BD=CD,结合∠BDF=∠CDE即可证得:△BDF≌△CDE;(2)由△BDF≌△CDE易得DE=DF,结合BD=CD可得四边形BFCE是平行四边形,结合DE=BC可得EF=BC,由此即可证得平行四边形BFCE是矩形.详解:(1)∵CE∥BF,∴∠CED=∠BFD.∵D是BC边的中点,∴BD=DC,在△BDF和△CDE中,,∴△BDF≌△CDE(AAS).(2)四边形BFCE是矩形.理由如下:∵△BDF≌△CDE,∴DE=DF,又∵BD=DC,∴四边形BFCE是平行四边形.∵DE=BC,DE=EF,∴BC=EF,∴平行四边形BFCE是矩形.点睛:熟悉“平行四边形和矩形的判定方法”是解答本题的关键.20、点C到AB的距离约为14cm.【解析】
通过勾股定理的逆定理来判断三角形ABC的形状,从而再利用三角形ABC的面积反求点C到AB的距离即可.【详解】解:过点C作CE⊥AB于点E,则CE的长即点C到AB的距离.在△ABC中,∵,,,∴,,∴,∴△ABC为直角三角形,即∠ACB=90°.……∵,∴,即,∴CE=14.4≈14.答:点C到AB的距离约为14cm.【点睛】本题的解题关键是掌握勾股定理的逆定理,能通过三角形面积反求对应的边长.21、,将不等式组的解集在数轴上表示见解析.【解析】
分别解两个不等式得两个不等式的解集,然后根据确定不等式组解集的方法确定解集,最后利用数轴表示其解集.【详解】由(1)可得由(2)可得∴原不等式组解集为【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.22、(1)详见解析;(2)当t=1或时,△PMB为以BM为腰的等腰三角形.【解析】
(1)设点M到BC的距离为h,由△ABC的面积易得h,利用分类讨论的思想,三角形的面积公式①当P在直线AB上运动;②当P运动到直线BC上时分别得△PBM的面积;(2)分类讨论:①当MB=MP时,PH=BH,解得t;②当BM=BP时,利用勾股定理可得BM的长,易得t.【详解】解:(1)设点M到BC的距离为h,由S△ABC=S△ABM+S△BCM,即,∴h=,①当P在直线AB上运动时△PBM的面积为S与P的运动时间为t秒关系为:S=(5﹣t)×,即S=﹣(0≤t<5);②当P运动到直线BC上时△PMB的面积为S与P的运动时间为t秒关系为:S=[5﹣(10﹣t)]×,即S=t-(5<t≤10);(2)存在①当MB=MP时,∵点A的坐标为(﹣3,4),AB=5,MB=MP,MH⊥AB,∴PH=BH,即3﹣t=2,∴t=1;②当BM=BP时,即5﹣t=,∴综上所述,当t=1或时,△PMB为以BM为腰的等腰三角形.【点睛】此题考查四边形综合题,解题关键在于利用三角形面积公式进行计算23、见解析【解析】试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案.试题解析:探究:∵四边形ABCD、四边形CEFG均为菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
∵∠A=∠F,
∴∠BCD=∠ECG.
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG.
在△BCE和△DCG中,∴△BCE≌△DCG(SAS),
∴BE=DG.应用:∵四边形ABCD为菱形,
∴AD∥BC,
∵BE=DG,
∴S△ABE+S△CDE=S△BEC=S△CDG=8,
∵AE=3ED,∴S△CDE=,∴S△ECG=S△CDE+S△C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度企业咨询服务及战略合作伙伴协议
- 2024年洗车场业务承包协议3篇
- 2024年工程监管协议细化版范本版B版
- 2024年奶制品加工企业养牛合同2篇
- 2024品牌代理加盟合同:跨境电商平台合作协议2篇
- 2024年合伙终止协议书3篇
- 2024年业务拓展委托协议模板版B版
- 2024年汽车购销协议参考格式版B版
- 企业员工借款是否属于劳动争议的2024年度判定合同3篇
- 2024年二手房买卖合同签订税费减免政策3篇
- 生物脊椎动物(鱼)课件-2024-2025学年人教版生物七年级上册
- 浙江省杭州市拱墅区2023-2024学年六年级(上)期末数学试卷
- 2024年物业化粪池维护合同3篇
- 2024年度互联网医院建设与运营合同3篇
- 无创呼吸机护理
- 趸船相关项目实施方案
- 苏州市苏科版二年级下册劳动与技术全一册全部教案(定稿)
- 《Python程序设计》课件-1:开发环境搭建
- 第7课《谁是最可爱的人》课件-2023-2024学年统编版语文七年级下册
- 健康体检专家共识
- 浙江省杭州市2024-2025学年高三上学期期中教学质量检测政治试题 含答案
评论
0/150
提交评论