版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省华阴市2024届八年级下册数学期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.函数的图象可能是()A. B.C. D.2.将方程x2+4x+3=0配方后,原方程变形为()A. B. C. D.3.将直线y=2x-3向右平移2个单位。再向上平移2个单位后,得到直线y=kx+b.则下列关于直线y=kx+b的说法正确的是()A.与y轴交于(0,-5) B.与x轴交于(2,0)C.y随x的增大而减小 D.经过第一、二、四象限4.点P(-4,2)关于原点对称点的坐标P’(-2,-2)则等于()A.6 B.-6 C.2 D.-25.若a<0,b>0,则化简的结果为()A. B. C. D.6.在平行四边形ABCD中,∠A+∠C=160°,则∠B的度数是()A.130° B.120° C.100° D.90°7.下列关于变量的关系,其中不是的函数的是()A.B.C.D.8.下列由线段、、组成的三角形中,不是直角三角形的为()A.,, B.,,C.,, D.,,9.如图,中,,连接,将绕点旋转,当(即)与交于一点,(即)与交于一点时,给出以下结论:①;②;③;④的周长的最小值是.其中正确的是()A.①②③ B.①②④ C.②③④ D.①③④10.若分式的值为0,则()A. B. C. D.11.如图①,在正方形ABCD中,点E是AB的中点,点P是对角线AC上一动点。设PC的长度为x,PE与PB的长度和为y,图②是y关于x的函数图象,则图象上最低点H的坐标为()A.(1,2) B.() C. D.12.我市某一周每天的最高气温统计如下(单位:℃):27,28,1,28,1,30,1.这组数据的众数与中位数分别是().A.28,28 B.28,1 C.1,28 D.1,1二、填空题(每题4分,共24分)13.如图如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AECH,如此下去,…,已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3…Sn(n为正整数),那么第814.如图,以Rt△ABC的斜边AB为一边在△ABC同侧作正方形ABEF.点O为AE与BF的交点,连接CO.若CA=2,CO=,那么CB的长为________.15.若关于的分式方程有增根,则的值为__________.16.若,则的值是________17.直线与轴、轴的交点分别为、则这条直线的解析式为__________.18.已知a+b=0目a≠0,则=_____.三、解答题(共78分)19.(8分)如图,直线与x轴相交于点A,与直线相交于点P.(1)求点P的坐标.(2)请判断△OPA的形状并说明理由.(3)动点E从原点O出发,以每秒1个单位的速度沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,矩形EBOF与△OPA重叠部分的面积为S.求S与t之间的函数关系式.20.(8分)在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;(总费用=广告赞助费+门票费)方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为;方案二中,当0≤x≤100时,y与x的函数关系式为,当x>100时,y与x的函数关系式为;(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.21.(8分)为了迎接“五·一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价180元,售价320元;乙种服装每件进价150元,售价280元.(1)若该专卖店同时购进甲、乙两种服装共200件,恰好用去32400元,求购进甲、乙两种服装各多少件?(2)该专卖店为使甲、乙两种服装共200件的总利润(利润=售价一进价)不少于26700元,且不超过26800元,则该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备在5月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(0<a<20)元出售,乙种服装价格不变.那么该专卖店要获得最大利润应如何进货?22.(10分)如图,矩形ABCD中,AB=6cm,BC=8cm,E、F是对角线AC上的两个动点,分别从A、C同时出发,相向而行,速度均为2cm/s,运动时间为t(0≤t≤5)秒.(1)若G、H分别是AB、DC的中点,且t≠2.5s,求证:以E、G、F、H为顶点的四边形始终是平行四边形;(2)在(1)的条件下,当t为何值时?以E、G、F、H为顶点的四边形是矩形;(3)若G、H分别是折线A-B-C,C-D-A上的动点,分别从A、C开始,与E.F相同的速度同时出发,当t为何值时,以E、G、F、H为顶点的四边形是菱形,请直接写出t的值.23.(10分)某加工厂购进甲、乙两种原料,若甲原料的单价为元千克,乙原料的单价为元千克.现该工厂预计用不多于万元且不少于万元的资金购进这两种原料共千克.(l)若需购进甲原料千克,请求出的取值范围;(2)经加工后:甲原料加工的产品,利润率为;每一千克乙原料加工的产品售价为元.则应该怎样安排进货,才能使销售的利润最大?(3)在(2)的条件下,为了促销,公司决定每售出一千克乙原料加工的产品,返还顾客现金元,而甲原料加工的产品售价不变,要使所有进货方案获利相同,求的值24.(10分)已知某实验中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草坪,经测量∠A=90°,AC=3m,BD=12m,CB=13m,DA=4m,若每平方米草坪需要300元,间学校需要投入多少资金买草坪?25.(12分)先化简,然后在0、±1、±2这5个数中选取一个作为x的值代入求值.26.在平面直角坐标系中,△ABC的三个顶点坐标分别为:A(1,1),B(3,2),C(1,4).(1)将△ABC先向下平移4个单位,再向右平移1个单位,画出第二次平移后的△A1B1C1.若将△A1B1C1看成是△ABC经过一次平移得到的,则平移距离是________.(2)以原点为对称中心,画出与△ABC成中心对称的△A2B2C2.
参考答案一、选择题(每题4分,共48分)1、C【解析】
分x<0,x>0两段来分析.【详解】解:当x<0时,y=-|k|x,此时-|k|<0,∴y随x的增大而减小,又y>0,所以函数图像在第二象限,排除A,D;当x>0时,y=|k|x,此时|k|>0,∴y随x的增大而增大,又y>0,所以函数图像在第一象限,排除B;故C正确.故选:C.【点睛】本题主要考查一次函数的图像与性质,掌握基本性质是解题的关键.2、A【解析】
把常数项3移项后,应该在左右两边同时加上一次项系数4的一半的平方.【详解】移项得,x2+4x=−3,配方得,x2+4x+4=−3+4,即(x+2)2=1.故答案选A.【点睛】本题考查了一元二次方程,解题的关键是根据配方法解一元二次方程.3、A【解析】
利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【详解】直线y=2x-3向右平移2个单位得y=2(x-2)-3,即y=2x-7;再向上平移2个单位得y=2x-7+2,即y=2x-5,A.当x=0时,y=-5,与y轴交于(0,-5),本项正确,B.当y=0时,x=,与x轴交于(,0),本项错误;C.2>0y随x的增大而增大,本项错误;D.2>0,直线经过第一、三象限,-5<0直线经过第四象限,本项错误;故选A.【点睛】此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.4、A【解析】
根据关于原点对称的点的坐标特点进行求解.【详解】解:∵点P(a-4,2)关于原点对称的点的坐标P′(-2,-2),∴a-4=2,∴a=6,故选:A.【点睛】本题考查了关于原点对称的点的坐标特点,关键是熟记关于原点对称的点的横纵坐标都变为相反数.5、B【解析】
根据二次根式的性质化简即可.【详解】解:由于a<0,b>0,∴ab<0,∴原式=|ab|=−ab,故选:B.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的性质,属于基础题型.6、C【解析】分析:直接利用平行四边形的对角相等,邻角互补即可得出答案.详解:如图所示:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°.∵∠A+∠C=160°,∴∠A=∠C=80°,∴∠B的度数是:100°.故选C.点睛:本题主要考查了平行四边形的性质,正确把握平行四边形各角之间的关系是解题的关键.7、D【解析】
根据函数的定义,设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量,进而判断得出即可.【详解】解:选项ABC中,对于x的每一个确定的值,y都有唯一的值与其对应,故y是x的函数;
只有选项D中,x取1个值,y有2个值与其对应,故y不是x的函数.
故选D.【点睛】此题主要考查了函数的定义,正确掌握函数定义是解题关键.8、D【解析】
欲判断三条线段是否能构成直角三角形的三边,就是判断三边的长是否为勾股数,需验证两小边的平方和是否等于最长边的平方即可.【详解】A、72+242=252,故线段a、b、c组成的三角形,是直角三角形,选项错误;B、42+52=41,故线段a、b、c组成的三角形,是直角三角形,选项错误;C、82+62=102,故线段a、b、c组成的三角形,是直角三角形,选项错误;D、402+502≠602,故线段a、b、c组成的三角形,不是直角三角形,选项正确.故选D.【点睛】本题主要考查了勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形,9、B【解析】
根据题意可证△ABE≌△BDF,可判断①②③,由△DEF的周长=DE+DF+EF=AD+EF=4+EF,则当EF最小时△DEF的周长最小,根据垂线段最短,可得BE⊥AD时,BE最小,即EF最小,即可求此时△BDE周长最小值.【详解】解:∵AB=BC=CD=AD=4,∠A=∠C=60°
∴△ABD,△BCD为等边三角形,
∴∠A=∠BDC=60°,
∵将△BCD绕点B旋转到△BC'D'位置,
∴∠ABD'=∠DBC',且AB=BD,∠A=∠DBC',
∴△ABE≌△BFD,
∴AE=DF,BE=BF,∠AEB=∠BFD,
∴∠BED+∠BFD=180°,
故①正确,③错误;
∵∠ABD=60°,∠ABE=∠DBF,
∴∠EBF=60°,
故②正确
∵△DEF的周长=DE+DF+EF=AD+EF=4+EF,
∴当EF最小时,∵△DEF的周长最小.
∵∠EBF=60°,BE=BF,
∴△BEF是等边三角形,
∴EF=BE,
∴当BE⊥AD时,BE长度最小,即EF长度最小,
∵AB=4,∠A=60°,BE⊥AD,∴EB=,∴△DEF的周长最小值为4+,
故④正确,综上所述:①②④说法正确,
故选:B.【点睛】本题考查了旋转的性质,等边三角形的性质,平行四边形的性质,最短路径问题,关键是灵活运用这些性质解决问题.10、C【解析】
根据分式值为零的条件是分式的分子等于2,分母不等于2解答即可.【详解】∵分式的值为2,∴|x|-2=2,x+2≠2.∴x=±2,且x≠-2.∴x=2.故选:C.【点睛】本题主要考查的是分式值为零的条件,明确分式值为零时,分式的分子等于2,分母不等于2是解题的关键.11、C【解析】
如图,连接PD.由B、D关于AC对称,推出PB=PD,推出PB+PE=PD+PE,推出当D、P、E共线时,PE+PB的值最小,观察图象可知,当点P与A重合时,PE+PB=3,推出AE=EB=1,AD=AB=2,分别求出PB+PE的最小值,PC的长即可解决问题.【详解】如图,连接PD.∵B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE,∴当D、P、E共线时,PE+PB的值最小,如下图:当点P与A重合时,PE+PB=3,,AD=AB=2在RT△AED中,DE=点H的纵坐标为点H的横坐标为H故选C.【点睛】本题考查正方形的性质,解题关键在于熟练掌握正方形性质及计算法则.12、D【解析】
根据中位数和众数的定义,先将这组数据按顺序依次排列,取中间的那个数即为中位数,取出现次数最多的那个数即为众数;【详解】众数:1;中位数:1;故选:D.【点睛】本题主要考查众数和中位数的定义,熟练掌握相关的定义是求解本题的关键.二、填空题(每题4分,共24分)13、128【解析】
由题意可以知道第一个正方形的边长为1,第二个正方形的边长为2,第三个正方形的边长为2,就有第n个正方形的边长为2(n-1),再根据正方形的面积公式就可以求出结论.【详解】第一个正方形的面积为1,故其边长为1=20;第二个正方形的边长为2,其面积为2=21;第三个正方形的边长为2,其面积为4=22;第四个正方形的边长为22,其面积为8=23;…第n个正方形的边长为(2)n-1,其面积为2n-1.当n=8时,S8=28-1,=27=128.故答案为:128.【点睛】此题考查正方形的性质,解题关键在于找到规律.14、+2【解析】如图,在BC上截取BD=AC=2,连接OD,∵四边形AFEB是正方形,∴AO=BO,∠AOB=∠ACB=90°,∴∠CAO=90°-∠ACH,∠DBO=90°-∠BHO,∵∠ACH=∠BHO,∴∠CAO=∠DBO,∴△ACO≌△BDO,∴DO=CO=,∠AOC=∠BOD,∵∠BOD+∠AOD=90°,∴∠AOD+∠AOC=90°,即∠COD=90°,∴CD=,∴BC=BD+CD=.故答案为:.点睛:本题的解题要点是,通过在BC上截取BD=AC,并结合已知条件证△ACO≌△BDO来证得△COD是等腰直角三角形,这样即可求得CD的长,从而使问题得到解决.15、【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x-1)(x+1)=0,得到x=1或-1,然后代入化为整式方程的方程,满足即可.【详解】方程两边都乘(x-5),得1-a=x-5,∴x=7-a∵原方程有增根,∴最简公分母x-5=0,解得x=5,∴7-a=5;∴a=1.故答案为:1.【点睛】本题考查了分式方程的增根,难度适中.确定增根可按如下步骤进行:①让最简公分母为0确定可能的增根;②化分式方程为整式方程;③把可能的增根代入整式方程,使整式方程成立的值即为分式方程的增根.16、.【解析】解:∵﹣=2,∴a﹣b=﹣2ab,∴原式====﹣.故答案为﹣.17、y=1x+1.【解析】
把(-1,0)、(0,1)代入y=kx+b得到,然后解方程组可.【详解】解:根据题意得,解得,所以直线的解析式为y=1x+1.故答案为y=1x+1.【点睛】本题考查了待定系数法求一次函数的解析式:设一次函数的解析式为y=kx+b(k、b为常数,k≠0),然后把函数图象上两个点的坐标代入得到关于k、b的方程组,然后解方程组求出k、b,从而得到一次函数的解析式.18、1【解析】
先将分式变形,然后将代入即可.【详解】解:,故答案为1【点睛】本题考查了分式,熟练将式子进行变形是解题的关键.三、解答题(共78分)19、(1);(2)△POA是等边三角形,理由见解析;(3)当0<t≤4时,,当4<t<8时,【解析】
(1)将两直线的解析式联立组成方程组,解得x、y的值即为两直线的交点坐标的横纵坐标;(2)求得直线AP与x轴的交点坐标(4,0),利用OP=4PA=4得到OA=OP=PA从而判定△POA是等边三角形;(3)分别求得OF和EF的值,利用三角形的面积计算方法表示出三角形的面积即可.【详解】解:(1)解方程组,解得:.∴点P的坐标为:;(2)当y=0时,x=4,∴点A的坐标为(4,0).∵,∴OA=OP=PA,∴△POA是等边三角形;(3)①当0<t≤4时,如图,在Rt△EOF中,∵∠EOF=60°,OE=t,∴EF=,OF=,∴.当4<t<8时,如图,设EB与OP相交于点C,∵CE=PE=t-4,AE=8-t,∴AF=4-,EF=,∴OF=OA-AF=4-(4-)=,∴=;综合上述,可得:当0<t≤4时,;当4<t<8时,.【点睛】本题主要考查了一次函数的综合知识,解题的关键是正确的利用一次函数的性质求与坐标轴的交点坐标并转化为线段的长.20、解:(1)方案一:y=60x+10000;当0≤x≤100时,y=100x;当x>100时,y=80x+2000;(2)当60x+10000>80x+2000时,即x<400时,选方案二进行购买,当60x+10000=80x+2000时,即x=400时,两种方案都可以,当60x+10000<80x+2000时,即x>400时,选方案一进行购买;(3)甲、乙单位购买本次足球赛门票分别为500张、200张.【解析】
(1)根据题意可直接写出用x表示的总费用表达式;(2)根据方案一与方案二的函数关系式分类讨论;(3)假设乙单位购买了a张门票,那么甲单位的购买的就是700-a张门票,分别就乙单位按照方案二:①a不超过100;②a超过100两种情况讨论a取值的合理性.从而确定求甲、乙两单位各购买门票数.【详解】解:(1)方案一:y=60x+10000;当0≤x≤100时,y=100x;当x>100时,y=80x+2000;(2)因为方案一y与x的函数关系式为y=60x+10000,∵x>100,方案二的y与x的函数关系式为y=80x+2000;当60x+10000>80x+2000时,即x<400时,选方案二进行购买,当60x+10000=80x+2000时,即x=400时,两种方案都可以,当60x+10000<80x+2000时,即x>400时,选方案一进行购买;(3)设甲、乙单位购买本次足球赛门票数分别为a张、b张;∵甲、乙单位分别采用方案一和方案二购买本次足球比赛门票,∴乙公司购买本次足球赛门票有两种情况:b≤100或b>100.①b≤100时,乙公司购买本次足球赛门票费为100b,解得不符合题意,舍去;②当b>100时,乙公司购买本次足球赛门票费为80b+2000,解得符合题意答:甲、乙单位购买本次足球赛门票分别为500张、200张.21、(1)购进甲、乙两种服装2件、1件(2)共有11种方案(3)购进甲种服装70件,乙种服装130件【解析】
(1)设购进甲种服装x件,则乙种服装是(200-x)件,根据两种服装共用去32400元,即可列出方程,从而求解.(2)设购进甲种服装y件,则乙种服装是(200-y)件,根据总利润(利润=售价-进价)不少于26700元,且不超过2620元,即可得到一个关于y的不等式组,解不等式组即可求得y的范围,再根据y是正整数整数即可求解.(3)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.【详解】解:(1)设购进甲种服装x件,则乙种服装是(200-x)件,根据题意得:12x+150(200-x)=32400,解得:x=2,200-x=200-2=1.∴购进甲、乙两种服装2件、1件.(2)设购进甲种服装y件,则乙种服装是(200-y)件,根据题意得:,解得:70≤y≤2.∵y是正整数,∴共有11种方案.(3)设总利润为W元,则W=(140-a)y+130(200-y),即w=(10-a)y+3.①当0<a<10时,10-a>0,W随y增大而增大,∴当y=2时,W有最大值,此时购进甲种服装2件,乙种服装1件.②当a=10时,(2)中所有方案获利相同,所以按哪种方案进货都可以.③当10<a<20时,10-a<0,W随y增大而减小,∴当y=70时,W有最大值,此时购进甲种服装70件,乙种服装130件.22、(1)证明见解析;(2)当t为4.5秒或0.5秒时,四边形EGFH是矩形;(3)t为秒时,四边形EGFH是菱形.【解析】
(1)根据勾股定理求出AC,证明△AFG≌△CEH,根据全等三角形的性质得到GF=HE,利用内错角相等得GF∥HE,根据平行四边形的判定可得结论;(2)如图1,连接GH,分AC-AE-CF=1.AE+CF-AC=1两种情况,列方程计算即可;(3)连接AG.CH,判定四边形AGCH是菱形,得到AG=CG,根据勾股定理求出BG,得到AB+BG的长,根据题意解答.【详解】解:(1)∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD∥BC,∠B=90°,∴∠BAC=∠DCA,∵AB=6cm,BC=1cm,∴AC=10cm,∵G、H分别是AB、DC的中点,∴AG=AB,CH=CD,∴AG=CH,∵E、F是对角线AC上的两个动点,分别从A、C同时出发,相向而行,速度均为2cm/s,∴AE=CF,∴AF=CE,∴△AGF≌△CHE(SAS),∴GF=HE,∠AFG=∠CEH,∴GF∥HE,∴以E、G、F、H为顶点的四边形始终是平行四边形;(2)如图1,连接GH,由(1)可知四边形EGFH是平行四边形,∵G、H分别是AB.DC的中点,∴GH=BC=1cm,∴当EF=GH=1cm时,四边形EGFH是矩形,分两种情况:①若AE=CF=2t,则EF=10-4t=1,解得:t=0.5,②若AE=CF=2t,则EF=2t+2t-10=1,解得:t=4.5,即当t为4.5秒或0.5秒时,四边形EGFH是矩形;(3)如图2,连接AG、CH,∵四边形GEHF是菱形,∴GH⊥EF,OG=OH,OE=OF,∵AF=CE∴OA=OC,∴四边形AGCH是菱形,∴AG=CG,设AG=CG=x,则BG=1-x,由勾股定理得:AB2+BG2=AG2,即62+(1-x)2=x2,解得:x=,∴BG=1-=,∴AB+BG=6+=,t=÷2=,即t为秒时,四边形EGFH是菱形.【点睛】本题是四边形的综合题,考查了矩形的性质.平行四边形的判定和菱形的判定,掌握矩形的性质定理.菱形的判定定理,灵活运用分情况讨论思想是解题的关键.23、(1);(2)购进甲原料7千克,乙原料13千克时,获得利润最大;(3);【解析】
(1)根据题意,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版离婚合同书:不含子女抚养权简易版版B版
- 2024电子商务平台软件许可及技术支持合同2篇
- 2024铝合金门窗工程承包合同范文
- 2024年三季度报医疗服务行业A股净利润排名前五大上市公司
- 2025年度床垫产品广告投放与宣传合同3篇
- 2024版借款居间服务合同
- 2025年度二零二五年度离婚后子女抚养及财产分割执行协议3篇
- 动物与中国文化知到智慧树章节测试课后答案2024年秋东北林业大学
- 居民区燃气管道工程合同样本
- 产科病房助产士招聘协议
- 广西崇左凭祥海关缉私分局缉私辅警招聘笔试真题2023
- BOSS GT-6效果处理器中文说明书
- EIM Book 1 Unit 5 Successful people单元检测试题
- 山西乡宁焦煤集团台头煤焦公司矿井兼并重组整合项目初步设计安全专篇
- 弱电工程自检报告
- DB33∕T 628.1-2021 交通建设工程工程量清单计价规范 第1部分:公路工程
- (完整版)八年级上综合性学习-我们的互联网时代-练习卷(含答案)
- 吉林省自学考试毕业生登记表
- 切线长定理、弦切角定理、切割线定理、相交弦定理93336
- 重庆市公路水运工程工地试验室管理实施细则
- 销售员心态突破与自我激励
评论
0/150
提交评论