湘潭市重点中学2024年八年级下册数学期末达标检测模拟试题含解析_第1页
湘潭市重点中学2024年八年级下册数学期末达标检测模拟试题含解析_第2页
湘潭市重点中学2024年八年级下册数学期末达标检测模拟试题含解析_第3页
湘潭市重点中学2024年八年级下册数学期末达标检测模拟试题含解析_第4页
湘潭市重点中学2024年八年级下册数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湘潭市重点中学2024年八年级下册数学期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.某天小明骑自行车上学,途中因自行车发生故障,修车耽误一段时间后继续骑行,按时赶到了学校.如图描述了他上学情景,下列说法中错误的是()A.用了5分钟来修车 B.自行车发生故障时离家距离为1000米C.学校离家的距离为2000米 D.到达学校时骑行时间为20分钟2.已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是()A.1.5 B.2 C.2.5 D.-63.如图,在中,,垂直平分于点,交于点,则为()A.30° B.25° C.20° D.15°4.下列根式中,不能与合并的是()A. B. C. D.5.有一组数据:3,3,5,6,1.这组数据的众数为()A.3 B.5 C.6 D.16.如图,在数轴上,点A表示的数是2,△OAB是Rt△,∠OAB=90°,AB=1,现以点O为圆心,线段OB长为半径画弧,交数轴负半轴于点C,则点C表示的实数是()A.﹣ B.﹣ C.﹣3 D.﹣27.关于反比例函数,下列说法中错误的是()A.它的图象分布在一、三象限B.它的图象过点(-1,-3)C.当x>0时,y的值随x的增大而增大D.当x<0时,y的值随x的增大而减小8.已知直线y1=2x与直线y2=﹣2x+4相交于点A.有以下结论:①点A的坐标为A(1,2);②当x=1时,两个函数值相等;③当x<1时,y1<y2;④直线y1=2x与直线y2=2x﹣4在平面直角坐标系中的位置关系是平行.其中正确的是()A.①③④ B.②③ C.①②③④ D.①②③9.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC10.函数的图象经过点,的值是()A. B. C. D.11.某课外兴趣小组为了了解所在学校的学生对体育运动的爱好情况,设计了四种不同的抽样调查方案,你认为比较合理的是()A.在校园内随机选择50名学生B.从运动场随机选择50名男生C.从图书馆随机选择50名女生D.从七年级学生中随机选择50名学生12.△ABC中,AB=20,AC=13,高AD=12,则△ABC的周长是()A.54 B.44 C.54或44 D.54或33二、填空题(每题4分,共24分)13.如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠PBQ=_____度.14.已知函数y=3x的图象经过点A(-1,y1),点B(-2,y2),则y1____y2(填“>”或“<”或“=”).15.若□ABCD中,∠A=50°,则∠C=_______°.16.一组正整数2、3、4、x从小到大排列,已知这组数据的中位数和平均数相等,那么x的值是.17.今年我市有5万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个调查中样本容量是______.18.某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可以打_____折.三、解答题(共78分)19.(8分)解下列方程:(1);(2).20.(8分)如图,正方形ABCD的边长为4,动点E从点A出发,以每秒2个单位的速度沿A→D→A运动,动点G从点A出发,以每秒1个单位的速度沿A→B运动,当有一个点到达终点时,另一点随之也停止运动.过点G作FG⊥AB交AC于点F.设运动时间为t(单位:秒).以FG为一直角边向右作等腰直角三角形FGH,△FGH与正方形ABCD重叠部分的面积为S.(1)当t=1.5时,S=________;当t=3时,S=________.(2)设DE=y1,AG=y2,在如图所示的网格坐标系中,画出y1与y2关于t的函数图象.并求当t为何值时,四边形DEGF是平行四边形?21.(8分)某校数学兴趣小组根据学习函数的经验,对函数y=|x|+1的图象和性质进行了探究,探究过程如下:(1)自变量x的取值范围是全体实数,x与y的几组对应值如表:X…﹣4﹣3﹣2﹣101234…Y…32.5m1.511.522.53…(1)其中m=.(2)如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)当2<y≤3时,x的取值范围为.22.(10分)甲、乙两名同学在练习打字时发现,甲打1800字的时间与乙打2400字的时间相同.已知乙每分钟比甲多打20个字,求甲每分钟打多少个字23.(10分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了“汉子听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉子得1分,本次决赛,学生成绩为x(分),且50≤x<100(无满分),将其按分数段分为五组,绘制出以下不完整表格:请根据表格提供的信息,解答以下问题:(1)本次决赛共有________名学生参加;(2)直接写出表中:a=,b=。(3)请补全右面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为________.24.(10分)计算(1);(2).25.(12分)点D是等边三角形ABC外一点,且DB=DC,∠BDC=120°,将一个三角尺60°角的顶点放在点D上,三角尺的两边DP,DQ分别与射线AB,CA相交于E,F两点.(1)当EF∥BC时,如图①所示,求证:EF=BE+CF.(2)当三角尺绕点D旋转到如图②所示的位置时,线段EF,BE,CF之间的上述数量关系是否成立?如果成立,请说明理由;如果不成立,写出EF,BE,CF之间的数量关系,并说明理由.(3)当三角尺绕点D继续旋转到如图③所示的位置时,(1)中的结论是否发生变化?如果不变化,直接写出结论;如果变化,请直接写出EF,BE,CF之间的数量关系.26.课堂上老师讲解了比较和的方法,观察发现11-10=15-14=1,于是比较这两个数的倒数:,,因为>,所以>,则有<.请你设计一种方法比较与的大小.

参考答案一、选择题(每题4分,共48分)1、D【解析】

观察图象,明确每一段小明行驶的路程,时间,作出判断即可.【详解】由图可知,修车时间为15-10=5分钟,可知A正确;自行车发生故障时离家距离为1000米,可知B正确;学校离家的距离为2000米,可知C正确;到达学校时骑行时间为20-5=15分钟,可知D错误,故选D.【点睛】本题考查了函数图象,读懂图象,能从图象中读取有用信息的数形、分析其中的“关键点”、分析各图象的变化趋势是解题的关键.2、A【解析】

根据一次函数的系数k=-0.5<0,可得出y随x值的增大而减小,将x=1代入一次函数解析式中求出y值即可.【详解】在一次函数y=-0.5x+2中k=-0.5<0,∴y随x值的增大而减小,∴当x=1时,y取最大值,最大值为-0.5×1+2=1.5,故选A.【点睛】本题考查了一次函数的性质,牢记“k<0,y随x的增大而减小”是解题的关键.3、D【解析】

连接BD,根据线段垂直平分线的性质可以证明△ABD是等腰三角形,在直角△BCD中根据30°角所对的直角边等于斜边的一半求出∠BDC的度数,然后利用三角形的外角的性质即可求解.【详解】连接BD,∵DE垂直平分AB于E,∴AD=BD=2BC,∴∵∴∠BDC=30°,又∵BD=DA,∴.故选D.【点睛】本题考查了线段的垂直平分线的性质以及等腰三角形的性质,正确求得∠BDC的度数是关键.4、C【解析】

解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项合题意;D、,本选项不合题意;故选C.考点:同类二次根式.5、A【解析】

根据众数的概念进行求解即可得答案.【详解】解:这组数据中3出现的次数最多,出现了2次,则众数为3,故选A.【点睛】本题考查了众数的概念,熟练掌握“一组数据中出现次数最多的数据叫做众数”是解题的关键.6、B【解析】

直接根据勾股定理,在Rt△AOB中,,求出OB长度,再求出OC长度,结合数轴即可得出结论.【详解】解:∵在Rt△AOB中,OA=2,AB=1,

∴OB==.

∵以O为圆心,以OB为半径画弧,交数轴的正半轴于点C,

∴OC=OB=,

∴点C表示的实数是-.

故选B.【点睛】本题考查的是实数与数轴以及复杂作图,熟知实数与数轴上各点是一一对应关系是解答此题的关键.7、C【解析】试题分析:反比例函数的性质:当时,图象位于一、三象限,在每一象限,y随x的增大而减小;当时,图象位于二、四象限,在每一象限,y随x的增大而增大.解:A、因为,所以它的图象分布在一、三象限,B、它的图象过点(-1,-3),D、当,y的值随x的增大而减小,均正确,不符合题意;C、当,y的值随x的增大而减小,故错误,本选项符合题意.考点:反比例函数的性质点评:反比例函数的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8、C【解析】∵将A(1,2)代入y1和y2中可得左边=右边,∴①是正确的;∵当x=1时,y1=2,y2=2,故两个函数值相等,∴②是正确的;∵x<1,∴2x<2,-2x+4>2,∴y1<y2,∴③是正确的;∵直线y2=2x-4可由直线y1=2x向下平移4个单位长度可得,∴直线y1=2x与直线y2=2x-4的位置关系是平行,∴④是正确的;故选C.9、D【解析】根据平行四边形判定定理进行判断:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.故选D.考点:平行四边形的判定.10、A【解析】

直接把点(1,m)代入正比例函数y=1x,求出m的值即可.【详解】解:∵正比例函数y=1x的图象经过点(1,m),

∴m=1.

故选:A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11、A【解析】

抽样调查中,抽取的样本不能太片面,一定要具有代表性.【详解】解:A、在校园内随机选择50名学生,具有代表性,合理;B、从运动场随机选择50名男生,喜欢运动,具有片面性,不合理;C、从图书馆随机选择50名女生,喜欢读书,具有片面性,不合理;D、从七年级学生中随机选择50名学生,具有片面性,不合理;故选:A.【点睛】本题考查了抽样调查的性质:①全面性;②代表性.12、C【解析】

根据题意画出示意图进行分析判断,然后根据勾股定理计算出底边BC的长,最后求和即可.【详解】(1)在直角三角形ACD中,有在直角三角形ADB中,有则CB=CD+DB=5+16=21所以三角形的面积为CB+AC+AB=21+13+20=54.(2)在直角三角形ACD中,有在直角三角形ADB中,有则CB=DB-CD=16-5=11所以三角形的面积为CB+AC+AB=11+13+20=44.故答案为:D.【点睛】本题考查了勾股定理的应用,解题关键在于以高为突破点把三角形分为高在三角形内部和外部的两种情况.二、填空题(每题4分,共24分)13、1【解析】

根据折叠的性质知:可知:BN=BP,从而可知∠BPN的值,再根据∠PBQ=∠CBQ,可将∠PBQ的角度求出.【详解】根据折叠的性质知:BP=BC,∠PBQ=∠CBQ

∴BN=BC=BP

∵∠BNP=90°

∴∠BPN=1°

∴∠PBQ=×60°=1°.

故答案是:1.【点睛】已知折叠问题就是已知图形的全等,根据边之间的关系,可将∠PBQ的度数求出.14、>【解析】

分别把点A(-1,y1),点B(-1,y1)的坐标代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.【详解】∵点A(-1,y1),点B(-1,y1)是函数y=3x的图象上的点,∴y1=-3,y1=-6,∵-3>-6,∴y1>y1.15、50【解析】因为平行四边形的对角相等,所以∠C=50°,故答案为:50°.16、5【解析】

解:∵这组数据的中位数和平均数相等,且2、3、4、x从小到大排列,∴(3+4)=(2+3+4+x),解得:x=5;故答案为517、1【解析】

根据样本容量的定义:样本中个体的数目称为样本容量,即可求解.【详解】解:这个调查的样本是1名考生的数学成绩,故样本容量是1.故答案为1.【点睛】本题考查样本容量,难度不大,熟练掌握样本容量的定义是顺利解题的关键.18、1.1.【解析】

设打x折,则售价是500×元.根据利润率不低于10%就可以列出不等式,求出x的范围.【详解】解:要保持利润率不低于10%,设可打x折.

则500×-400≥400×10%,

解得x≥1.1.

故答案是:1.1.【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.三、解答题(共78分)19、(1)x=5,x=−2;(2)-2【解析】

(1)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)因为2x+6=2(x+3),所以可得方程最简公分母为2(x+3),然后去分母转化为整式方程求解.【详解】(1)x(x−3)=10,整理得:x−3x−10=0,(x−5)(x+2)=0,x−5=0,x+2=0,x=5,x=−2;(2)原方程的两边同时乘以2(x+3),得:4+3(x+3)=7,解这个方程,得x=−2,检验:将x=−2代入2(x+3)时,该式等于2,∴x=−2是原方程的根【点睛】此题考查解一元二次方程-因式分解法,解分式方程,掌握运算法则是解题关键20、(1);;(2)当t=或t=4时,四边形DEGF是平行四边形.【解析】

(1)当t=1.5时,如图①,重叠部分的面积是△FGH的面积,求出即可;当t=3时,如图②,重叠部分的面积是四边形FGBK的面积,也就是△FGH的面积减去△KBH的面积,求出即可;(2)进行分类讨论,列出方程即可求出t的值.【详解】解:当t=1.5时,如图①,重叠部分的面积是△FGH的面积,所以S=;当t=3时,如图②,重叠部分的面积是四边形FGBK的面积,也就是△FGH的面积减去△KBH的面积,所以S=×3×3-×2×2=.(2)由题意可以求得y1=;y2=t(0≤t≤4).<所以y1与y2关于t的函数图象如图③所示.因为运动过程中,DE∥FG,所以当DE=FG时,四边形DEGF是平行四边形.∵FG=AG,∴DE=AG,∴y1=y2.由图象可知,有两个t值满足条件:①当0≤t≤2时,由4-2t=t,解得t=;②当2<t≤4时,由2t-4=t,解得t=4.所以当t=或t=4时,四边形DEGF是平行四边形.21、(1)2;(2)见解析;(3)﹣1≤x<﹣2或2<x≤1【解析】

(1)依据在y=|x|+1中,令x=﹣2,则y=2,可得m的值;(2)将图中的各点用平滑的曲线连接,即可画出该函数的图象;(3)依据函数图象,即可得到当2<y≤3时,x的取值范围.【详解】(1)在y=|x|+1中,令x=﹣2,则y=2,∴m=2,故答案为2;(2)如图所示:(3)由图可得,当2<y≤3时,x的取值范围为﹣1≤x<﹣2或2<x≤1.故答案为﹣1≤x<﹣2或2<x≤1.【点睛】本题考查了一次函数的图象与性质以及一次函数图象上点的坐标特征,根据题意画出图形,利用数形结合思想是解题的关键.22、60【解析】

设甲每分钟打x个字,根据“甲打1800字的时间与乙打2400字的时间相同”列出方程,解方程即可求解.【详解】解:设甲每分钟打x个字.根据题意,得.解得.经检验,是原方程的解,且符合题意.答:甲打字的速度是每分钟60个字。【点睛】本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.23、(1)50;(2)20,0.24;(3)详见解析;(4)52%.【解析】

(1)根据表格中的数据可以求得本次决赛的学生数;(2)根据(1)中决赛学生数,可以求得a、b的值;(3)根据(2)中a的值,可以将频数分布直方图补充完整;(4)根据表格中的数据可以求得本次大赛的优秀率.【详解】解:(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;(2)a=50×0.4=20,b=12÷50=0.24,故答案为:20,0.24;(3)补全的频数分布直方图如右图所示,(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.4+0.12)×100%=52%,故答案为:52%.【点睛】本题考查频数分布直方图、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.24、(1);(2).【解析】

(1)先根据二次根式的性质进行化简,再去括号进行运算,即可得到答案;(2)先根据二次根式的性质进行化简,进行运算,即可得到答案.【详解】(1)===2(2)==【点睛】本题考查二次根式的混合运算,解题的关键是先化简再进行计算.25、(1)见解析;(2)结论仍然成立.理由见解析;(3)结论发生变化.EF=CF-BE.【解析】

(1)根据△ABC是等边三角形知道AB=AC,∠ABC=∠ACB=60°,而DB=DC,∠BDC=120°,这样可以得到△DCF和△BED是直角三角形,由于EF∥BC,可以证明△AEF是等边三角形,也可以证明△BDE≌△CDF,可以得到DE=DF,由此进一步得到

DE=DF∠BDE=∠CDF=30°,这样可以得到BE=DE=DF=CF,而△DEF是等边三角形,所以题目的结论就可以证明出来了;(2)结论仍然成立.如图,在AB的延长线上取点F’,使BF’=CF,连接DF’,根据(1)的结论可以证明△DCF≌△DBF’,根据全等三角形的性质可以得到DF=DF’,∠BDF’=∠CDF,又∠BDC=120°,∠EDF=60°,可以得到:∠EDF’=∠CDF=60°,由此可以证明△EDF’≌△EDF,从而证明题目的结论;(3)结论发生变化.EF=BE-CF.如图,在射线AB上取点F′,使BF′=CF,连接DF′.由(1)得△DCF≌△DBF′(SAS).根据全等三角形的性质可以得到DF=DF′,∠BDF′=∠CDF.又因为∠BDC=120°,∠EDF=60°,可以得到∠FDB+∠CDF=60°,∠FDB+∠BDF′=∠FDF′=120°,所以∠EDF′=∠EDF=60°,由此可得△EDF′≌△EDF(SAS),从而证明题目的结论EF=EF′=BF′-BE=CF-BE。【详解】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°.∵DB=DC,∠BDC=120°,∴∠DBC=∠DCB=30°.∴∠DBE=∠DBC+∠ABC=90°,∠DCF=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论