2024届辽宁省营口市大石桥市金桥中学八年级下册数学期末质量跟踪监视模拟试题含解析_第1页
2024届辽宁省营口市大石桥市金桥中学八年级下册数学期末质量跟踪监视模拟试题含解析_第2页
2024届辽宁省营口市大石桥市金桥中学八年级下册数学期末质量跟踪监视模拟试题含解析_第3页
2024届辽宁省营口市大石桥市金桥中学八年级下册数学期末质量跟踪监视模拟试题含解析_第4页
2024届辽宁省营口市大石桥市金桥中学八年级下册数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届辽宁省营口市大石桥市金桥中学八年级下册数学期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在中,,,则BC边上的高为A.12 B.10 C.9 D.82.如果等腰三角形两边长是6和3,那么它的周长是()A.15或12 B.9 C.12 D.153.如图,在△ABC中,AB=AC,AD是中线,DE⊥AB,DF⊥AC,垂足分别为E,F,则下列四个结论中:①AB上任一点与AC上任一点到D的距离相等;②AD上任一点到AB,AC的距离相等;③∠BDE=∠CDF;④∠1=∠2;其中正确的有()A.1个 B.2个 C.3个 D.4个4.如图,在平行四边形ABCD中,AC与BD相交于O,且AO=BD=4,AD=3,则△BOC的周长为()A.9 B.10 C.12 D.145.某商品的标价比成本价高m%,现根据市场需要,该商品需降价n%岀售.为了使获利不低于10%,n应满足()A. B.C. D.6.如图,平行四边形ABCD中,AE平分∠BAD交边BC于点E,已知AD=7,CE=3,则AB的长是()A.7 B.3 C.3.5 D.47.如图所示,已知四边形ABCD的对角线AC、BD相交于点O,则下列能判断它是正方形的条件是()A., B.C.,, D.,8.如图,中,,平分,点为的中点,连接,若的周长为24,则的长为()A.18 B.14 C.12 D.69.函数y=中自变量x的取值范围是()A.x≠2 B.x≠0 C.x≠0且x≠2 D.x>210.直角三角形的三边为a、b、c,其中a、b两边满足,那么这个三角形的第三边c的取值范围为()A.c>6 B.6<c<8 C.2<c<14 D.c<8二、填空题(每小题3分,共24分)11.方程的解是________.12.如图,正方形ABCD中,,点E、F分别在边AD和边BC上,且,动点P、Q分别从A、C两点同时出发,点P自A→F→B方向运动,点Q自C→D→E→C方向运动若点P、Q的运动速度分别为1cm/s,3cm/s,设运动时间为,当A、C、P、Q四点为顶点的四边形是平行四边形时则t=________________13.如图,直线与x轴交点坐标为,不等式的解集是____________.14.如图,在矩形中,,点分别在平行四边形各边上,且AE=CG,BF=DH,四边形的周长的最小值为______.15.如图,在中,若,点是的中点,则_____.16.如果一组数据3,4,,6,7的平均数为5,则这组数据的中位数和方差分别是__和__.17.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是______.18.分解因式:4-m2=_____.三、解答题(共66分)19.(10分)解不等式组并将解集在数轴上表示出来.20.(6分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:(1)请将下表补充完整:(参考公式:方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2])平均数方差中位数甲77乙5.4(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,的成绩好些;②从平均数和中位数相结合看,的成绩好些;③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.21.(6分)解方程:x-1x-2-422.(8分)如图,点D,C在BF上,AC∥DE,∠A=∠E,BD=CF.(1)求证:AB=EF;(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.23.(8分)铜仁市积极推动某公园建设,通过旅游带动一方经济,计划经过若干年使公园绿化总面积新增450万平方米.自2016年初开始实施后,实际每年绿化面积是原计划的1.5倍,这样可以提前3年完成任务.(1)求实际每年绿化面积是多少万平方米(2)为加大公园绿化力度,市政府决定从2019年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?24.(8分)某种计时“香篆”在0:00时刻点燃,若“香篆”剩余的长度h(cm)与燃烧的时间x(h)之间是一次函数关系,h与x的一组对应数值如表所示:燃烧的时间x(h)…3456…剩余的长度h(cm)…210200190180…(1)写出“香篆”在0:00时刻点然后,其剩余的长度h(cm)与燃烧时间x(h)的函数关系式,并解释函数表达式中x的系数及常数项的实际意义;(2)通过计算说明当“香篆”剩余的长度为125cm时的时刻.25.(10分)(1)解方程:x2+3x-4=0(2)计算:26.(10分)如图,点E,F在菱形ABCD的对边上,AE⊥BC.∠1=∠1.(1)判断四边形AECF的形状,并证明你的结论.(1)若AE=4,AF=1,试求菱形ABCD的面积.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

作于D,根据等腰三角形的性质求出BD,根据勾股定理计算,得到答案.【详解】解:作于D,

由勾股定理得,,

故选A.【点睛】本题考查的是勾股定理、等腰三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.2、D【解析】

由已知可得第三边是6,故可求周长.【详解】另外一边可能是3或6,根据三角形三边关系,第三边是6,所以,三角形的周长是:6+6+3=15.故选D【点睛】本题考核知识点:等腰三角形.解题关键点:分析等腰三角形三边的关系.3、C【解析】试题分析:根据等腰三角形的三线合一定理可得:∠1=∠2,∠BDE=∠CDF,根据角平分线的性质可知:AD上任一点到AB、AC的距离相等,故正确的有3个,选C.4、A【解析】

利用平行四边形的性质即可解决问题.【详解】∵四边形ABCD是平行四边形,∴AD=BC=3,OD=OB==2,OA=OC=4,∴△OBC的周长=3+2+4=9,故选:A.【点睛】题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.5、B【解析】

根据利润=售价-进价,列出出不等式,求解即可.【详解】设成本为a元,由题意可得:则去括号得:整理得:故.故选B.【点睛】考查一元一次不等式的应用,熟练掌握利润=售价-进价是列不等式求解的关键.6、D【解析】

先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而由EC的长求出BE即可解答.【详解】解:∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=7,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∵EC=3,∴BE=BC-EC=7-3=4,∴AB=4,故选D.【点睛】本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE=∠AEB是解决问题的关键.7、A【解析】

根据正方形的判定定理即可求解.【详解】A∵,∴四边形ABCD为矩形,由,所以矩形ABCD为正方形,B.,四边形ABCD为菱形;C.,,,四边形ABCD为菱形;D.,,不能判定四边形ABCD为正方形,故选A.【点睛】此题主要考查正方形的判定,解题的关键是熟知正方形的判定定理.8、A【解析】

根据题意可知,本题考查了等腰三角形三线合一,直角三角形斜边上的中线的性质,根据等腰三角形三线合一找准底边中线与直角三角形斜边上的中线等于斜边的一半,进行分析推断.【详解】解:,平分垂直平分(等腰三角形三线合一),又在直角三角形中,点是边中点,即的周长24即的周长918故应选A【点睛】本题解题关键:理解题干的条件,运用有关性质定理,特别注意的是利用等量代换的思维表示的周长.9、A【解析】

根据分母不为0列式求值即可.【详解】由题意得x﹣1≠0,解得:x≠1.故选:A.【点睛】此题主要考查函数的自变量取值,解题的关键是熟知分母不为零.10、C【解析】

根据非负数的性质列式求出a、b,再根据三角形的任意两边之和大于第三边,两边只差小于第三边求解即可.【详解】由题意得,a−12a+36=0,b−8=0,解得a=6,b=8,∵8−6=2,8+6=14,∴2<c<14.故选C.【点睛】此题考查三角形三边关系,解题关键在于据非负数的性质列式求出a、b二、填空题(每小题3分,共24分)11、【解析】

推出方程x-3=0或x=0,求出方程的解即可.【详解】解:∵,即x=0或x+3=0,∴方程的解为.【点睛】本题主要考查对解一元二次方程,解一元一次方程,等式的性质等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.12、3s或6s【解析】

根据两点速度和运动路径可知,点Q在EC上、点P在AF上或和点P在BC上时、点Q在AD上时,A、C、P、Q四点为顶点的四边形是平行四边形.根据平行四边形性质构造方程即可.【详解】由P、Q速度和运动方向可知,当Q运动EC上,P在AF上运动时,若EQ=FP,A、C、P、Q四点为顶点的四边形是平行四边形∴3t-7=5-t∴t=3当P、Q分别在BC、AD上时若QD=BP,形A、C、P、Q四点为顶点的四边形是平行四边形此时Q点已经完成第一周∴4-[3(t-4)-4]=t-5+1∴t=6故答案为:3s或6s.【点睛】本题考查了正方形的性质,平行四边形的判定和性质,动点问题的分类讨论和三角形全等有关知识.解答时注意分析两个动点的相对位置关系.13、【解析】

根据直线y=kx+b与x轴交点坐标为(1,0),得出y的值不小于0的点都符合条件,从而得出x的解集.【详解】解:∵直线y=kx+b与x轴交点坐标为(1,0),∴由图象可知,当x≤1时,y≥0,∴不等式kx+b≥0的解集是x≤1.故答案是x≤1.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.14、20【解析】

作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,由对称结合矩形的性质可知:E′G′=AB,GG′=AD,利用勾股定理即可求出E′G的长度,进而可得出四边形EFGH周长的最小值【详解】作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,EF=E'F,过点G作GG′⊥AB于点G′,如图所示AE=CG.BE=BE′E′G′=AB=8,GG′=AD=6E`G=∵C四边形EFGH=2(GF+EF)=2E′G=20【点睛】此题考查矩形的性质,勾股定理,解题关键在于作辅助线15、1【解析】

先依据勾股定理的逆定理,即可得到是直角三角形,再根据直角三角形斜边上中线的性质,即可得出结论.【详解】解:,,,

是直角三角形,

又点E是AB的中点,

故答案为:1.【点睛】本题主要考查了勾股定理的逆定理以及直角三角形斜边上中线的性质,解题时注意运用:在直角三角形中,斜边上的中线等于斜边的一半.16、5;1.【解析】

首先根据其平均数为5求得的值,然后再根据中位数及方差的计算方法计算即可.【详解】解:数据3,4,,6,7的平均数是5,解得:,中位数为5,方差为.故答案为:5;1.【点睛】本题考查了平均数、中位数及方差的定义与求法,熟练掌握各自的求法是解题关键.17、1【解析】

延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△ABD的面积.【详解】解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,,∴△ABD≌△CED(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=AD•AB=1.故答案为1.【点睛】本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形.18、(2+m)(2−m)【解析】

原式利用平方差公式分解即可.【详解】解:原式=(2+m)(2−m),

故答案为:(2+m)(2−m).【点睛】此题考查了因式分解−运用公式法,熟练掌握平方差公式是解本题的关键.三、解答题(共66分)19、1<x≤1.【解析】

分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【详解】,由①得,x≤1,由②得,x>1,故不等式组的解集为:1<x≤1.在数轴上表示为:.20、(1)1.2,7,7.5;(2)甲,乙,乙,理由见解析.【解析】分析:(1)根据统计表,结合平均数、方差、中位数的定义,即可求出需要填写的内容.(2)①可分别从平均数和方差两方面着手进行比较;②可分别从平均数和中位数两方面着手进行比较;③可从具有培养价值方面说明理由.详解:解:(1)甲的方差[(9﹣7)2+(5﹣7)2+4×(7﹣7)2+2×(8﹣7)2+2×(6﹣7)2]=1.2,乙的平均数:(2+4+6+8+7+7+8+9+9+10)÷10=7,乙的中位数:(7+8)÷2=7.5,填表如下:平均数方差中位数甲71.27乙75.47.5(2)①从平均数和方差相结合看,甲的成绩好些;②从平均数和中位数相结合看,乙的成绩好些;③选乙参加.理由:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,应选乙.故答案为:(1)1.2,7,7.5;(2)①甲;②乙.点睛:本题考查了折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,折线统计图能清楚地看出数据的变化情况.21、x=-1【解析】

方程两边同时乘以最简公分母x2-4,把分式方程转化为整式方程求解.【详解】解:方程两边都乘以(x+2)(x-2)得:(x-1)(x+2)-4=2(x+2)(x-2),即x2-x-2=0,解得:x=-1或2,检验:当x=-1时,(x+2)(x-2)≠0,所以x=-1是原方程的解,当x=2时,(x+2)(x-2)=0,所以x=2不是原方程的解,所以原方程组的解为:x=-1.故答案为:x=-1.【点睛】本题考查了解分式方程.22、(1)证明见解析;(2)四边形ABEF为平行四边形,理由见解析.【解析】

(1)利用AAS证明,再根据全等三角形的性质可得;(2)首先根据全等三角形的性质可得,再根据内错角相等两直线平行可得到,又,可证出四边形为平行四边形.【详解】证明:,,,,即,在与中,≌,;猜想:四边形ABEF为平行四边形,理由如下:由知≌,,,又,四边形ABEF为平行四边形.【点睛】此题主要考查了全等三角形的判定与性质,平行四边形的判定,解决问题的关键是证明.23、(1)实际每年绿化面积为75万平方米;(2)平均每年绿化面积至少还要增加37.5万平方米.【解析】

(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.5x万平方米.根据“实际每年绿化面积是原计划的1.5倍,这样可提前3年完成任务”列出方程;(2)设平均每年绿化面积增加a万平方米.则由“完成新增绿化面积不超过2年”列出不等式.【详解】解:(1)设原计划每年绿化面积为x万平方米,,解得x=50,经检验,x=50是此分式方程的解.∴1.5x=75.答:实际每年绿化面积为75万平方米.(2)设平均每年绿化面积至少还要增加a万平方米,75×3+2(75+a)≥450,解得a≥37.5.答:平均每年绿化面积至少还要增加37.5万平方米.【点睛】此题考查一元一次不等式的应用,分式方程的应用,解题关键在于列出方程24、(1)x的系数表示“香篆”每小时燃烧10cm,常数项表示“香篆”未点燃之前的长度为240cm;;(2)“香篆”在0:00点燃后,燃烧了11.5小时后的时刻为11点30分.【解析】

(1)根据待定系数法确定函数关系式即可求解;(2)把h=125代入解析式即可求解.【详解】解:(1)∵“香篆”在0:00时刻点然后,其剩余的长度h(cm)与燃烧时间x(h)的函数关系式是一次函数,设一次函数的解析式为:h=kx+b,∵当x=3时,h=210,当x=4时,h=200,可得:,解得:,所以解析式为:h=﹣10x+240,x的系数表示“香篆”每小时燃烧10cm,常数项表示“香

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论