版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年山东省青岛市新海岸新区信阳中学八年级数学第二学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.边长是4且有一个内角为60°的菱形的面积为()A.2 B.4 C.8 D.162.如图所示,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子顶端B到地面距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于4m,同时梯子的顶端B下降至B′,那么BB′的长为()A.等于1m B.大于1m C.小于1m D.以上答案都不对3.方程x(x﹣1)=x的解是()A.x=0 B.x=2 C.x1=0,x2=1 D.x1=0,x2=24.鞋子的“鞋码”和鞋长存在一种换算关系,下表是几组鞋长与“鞋码”换算的对应数值(注:“鞋码”是表示鞋子大小的一种号码).设鞋长x,“鞋码”为y,试判断点在下列哪个函数的图象上()鞋长16192123鞋码(码)22283236A. B.C. D.5.如果a>b,下列各式中不正确的是(
)A.a-3>b-3
B. C.2a>2b D.-2a+5<-2b+56.如图,矩形的面积为,反比例函数的图象过点,则的值为()A. B. C. D.7.直角三角形的三边为a﹣b,a,a+b且a、b都为正整数,则三角形其中一边长可能为()A.61 B.71 C.81 D.918.下列各组数中,属于勾股数的是()A.1,,2 B.1.5,2,2.5 C.6,8,10 D.5,6,79.已知▱ABCD的周长为50cm,△ABC的周长为35cm,则对角线AC的长为()A.5cm B.10cm C.15cm D.20cm10.下列图形中,是中心对称图形但不是轴对称图形的是()A.等边三角形 B.平行四边形 C.一次函数图象 D.反比例函数图象11.下列计算正确的是()A. B. C. D.12.一个正多边形的内角和为,则这个正多边形的每一个外角的度数是()A. B. C. D.二、填空题(每题4分,共24分)13.直线y=3x-2不经过第________________象限.14.若某人沿坡度在的斜坡前进则他在水平方向上走了_____15.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是___________.(填“>”,“<”或“=”)16.一组数据3,2,4,5,2的众数是______.17.如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为_____.18.如图,BD是矩形ABCD的一条对角线,点E、F分别是BD、BC的中点,若AB=8,BC=6,则AE+EF的长为_____.三、解答题(共78分)19.(8分)如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOD的面积.20.(8分)如图,在矩形ABCD中,AB=3cm,BC=6cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.21.(8分)如图,已知直线l:y=﹣x+b与x轴,y轴的交点分别为A,B,直线l1:y=x+1与y轴交于点C,直线l与直线ll的交点为E,且点E的横坐标为1.(1)求实数b的值和点A的坐标;(1)设点D(a,0)为x轴上的动点,过点D作x轴的垂线,分别交直线l与直线ll于点M、N,若以点B、O、M、N为顶点的四边形是平行四边形,求a的值.22.(10分)(1)如图,已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.(2)如图,用3个全等的菱形构成活动衣帽架,顶点A、E、F、C、G、H是上、下两排挂钩,根据需要可以改变挂钩之间的距离(比如AC两点可以自由上下活动),若菱形的边长为13厘米,要使两排挂钩之间的距离为24厘米,并在点B、M处固定,则B、M之间的距离是多少?23.(10分)如图,在四边形ABCD中,AB∥DC,边AD与BC不平行(1)若∠A=∠B,求证:AD=BC.(2)已知AD=BC,∠A=70°,求∠B的度数.24.(10分)如图,一次函数y=﹣x+4的图象与x轴y轴分别交于点A、点B,与正比例函数y=x的图象交于点C,将点C向右平移1个单位,再向下平移6个单位得点D.(1)求△OAB的周长;(2)求经过D点的反比例函数的解析式;25.(12分)如图,在中,,E为CA延长线上一点,D为AB上一点,F为外一点且连接DF,BF.(1)当的度数是多少时,四边形ADFE为菱形,请说明理由:(2)当AB=时,四边形ACBF为正方形(请直接写出)26.如图,在平面直角坐标系中,的直角边在轴上,.点的坐标为,点的坐标为,是边的中点,函数的图象经过点.(1)求的值;(2)将绕某个点旋转后得到(点,,的对应点分别为点,,),且在轴上,点在函数的图象上,求直线的表达式.
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据菱形内角度数及边长求出一边上的高,利用边长乘以高即可求出面积.【详解】解:如图,过点A作AE⊥BC于点E,∵∴.∴菱形面积为4×2=8.故选:C.【点睛】本题主要考查菱形的面积,能够求出菱形边上的高是解题的关键.2、C【解析】
由题意可知OA=2,OB=7,先利用勾股定理求出AB,梯子移动过程中长短不变,所以AB=A′B′,又由题意可知OA′=3,利用勾股定理分别求OB′长,把其相减得解.【详解】在直角三角形AOB中,∵OA=2,OB=7∴AB=(m),由题意可知AB=A′B′=(m),又∵OA′=4,根据勾股定理得:OB′=(m),∴BB′=7﹣<1.故选C.【点睛】本题考查了勾股定理的应用,属于基础题,解答本题的关键是掌握勾股定理的表达式.3、D【解析】
移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x(x−1)=x,x(x−1)−x=0,x(x−1−1)=0,x=0,x−1−1=0,x1=0,x1=1.故选:D.【点睛】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.4、B【解析】
设一次函数y=kx+b,把两个点的坐标代入,利用方程组即可求解.【详解】解:设一次函数y=kx+b,把(16,22)、(19,28)代入得;解得,∴y=2x-10;
故选:B.【点睛】此题考查一次函数的实际运用,利用待定系数法求函数解析式的问题.5、B【解析】
根据不等式两边加上(或减去)同一个数,不等号方向不变对A进行判断;根据不等式两边乘以(或除以)同一个负数,不等号方向改变可对B、D进行判断.根据不等式两边乘以(或除以)同一个正数,不等号方向不变可对C进行判断.【详解】A选项:a>b,则a-3>b-3,所以A选项的结论正确;
B选项:a>b,则-a<-b,所以B选项的结论错误;
C选项:a>b,则2a>2b,所以C选项的结论正确;
D选项:a>b,则-2a<-2b,所以D选项的结论正确.
故选:B.【点睛】考查了不等式的性质:不等式两边加上(或减去)同一个数,不等号方向不变;不等式两边乘以(或除以)同一个正数,不等号方向不变;不等式两边乘以(或除以)同一个负数,不等号方向改变.6、B【解析】
由于点A是反比例函数上一点,矩形ABOC的面积,再结合图象经过第二象限,则k的值可求出.【详解】由题意得:,又双曲线位于第二象限,则,
所以B选项是正确的.【点睛】本题主要考查反比例函数y=kx中k几何意义,这里体现了数形结合的数形,关键在于理解k的几何意义.7、C【解析】由题可知:(a−b)2+a2=(a+b)2,解之得:a=4b,所以直角三角形三边分别为3b、4b、5b.当b=27时,3b=81.故选C.8、C【解析】
根据勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,据此判断即可.【详解】A.1,,2,因为不是正整数,故一定不是勾股数,故此选项错误;B.1.5,2,2.5,因为不是正整数,故一定不是勾股数,故此选项错误;C.因为62+82=102,故是勾股数.故此选项正确;D.因为52+62≠72,故不是勾股数,故此选项错误.故选C.【点睛】本题考查了勾股数的判定方法,比较简单,首先看各组数据是否都是正整数,再检验是否符合较小两边的平方和=最大边的平方.9、B【解析】
根据平行四边形的性质,首先计算AB+CB的长度,再结合三角形的周长,进而计算对角线AC的长.【详解】解:∵平行四边形的对边相等,∴AB+CB=25,而△ABC的周长为35cm,∴AC=35﹣AB﹣CB=10cm.故选:B.【点睛】本题主要考查对角线的长度的计算,结合平行四边形的性质和三角形的周长可得对角线的长度.10、B【解析】
根据中心对称和轴对称图形的定义判定即可.【详解】解:A.等边三角形是轴对称图形,不是中心对称图形;B.平行四边形既不是轴对称图形但是中心对称图形;C.一次函数图象是轴对称图形也是中心对称图形;D.反比例函数图象是轴对称图形也是中心对称图形;故答案为B.【点睛】本题考査了中心对称图形与轴对称图形的概念,轴对称图形的关键是明确轴对称图形和中心对称图形的区别和联系.11、B【解析】分析:根据二次根式的性质,二次根式的乘法,二次根式的除法逐项计算即可.详解:A.,故不正确;B.,故正确;C.,故不正确;D.,故不正确;故选B.点睛:本题考查了二次根式的性质与计算,熟练掌握二次根式的性质、二次根式的乘除法法则是解答本题的关键.12、A【解析】
根据多边形的内角和公式求出边数,从而求得每一个外角的度数.【详解】多边形的内角和为,即解得:∴该多边形为正八边形∴正八边形的每一个外角为:故选:A【点睛】本题考查了多边形的内角和与外角和公式,解题的关键在于根据内角和求出具体的边数.二、填空题(每题4分,共24分)13、二【解析】
根据已知求得k,b的符号,再判断直线y=3x-2经过的象限.【详解】解:∵k=3>0,图象过一三象限,b=-2<0过第四象限∴这条直线一定不经过第二象限.故答案为:二【点睛】此题考查一次函数的性质,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.14、【解析】
根据坡度的概念得到∠A=45°,根据正弦的概念计算即可.【详解】如图,斜坡的坡度,,,故答案为:.【点睛】本题考查了解直角三角形的应用,解答本题的关键是理解坡度及坡角的定义,熟练勾股定理的表达式.15、<【解析】
根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的成绩比乙的成绩稳定,∴S2甲<S2乙,故答案为:<.【点睛】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.16、1【解析】
从一组数据中找出出现次数最多的数就是众数,发现1出现次数最多,因此1是众数.【详解】解:出现次数最多的是1,因此众数是1,故答案为:1.【点睛】本题考查了众数的意义,从一组数据中找到出现次数最多的数就是众数.17、1【解析】
过A作x轴垂线,过B作x轴垂线,求出A(1,1),B(2,),C(1,k),D(2,),将面积进行转换S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB进而求解.【详解】解:过A作x轴垂线,过B作x轴垂线,点A,B在反比例函数y=(x>0)的图象上,点A,B的横坐标分别为1,2,∴A(1,1),B(2,),∵AC∥BD∥y轴,∴C(1,k),D(2,),∵△OAC与△ABD的面积之和为,,S△ABD=S梯形AMND﹣S梯形AAMNB,,∴k=1,故答案为1.【点睛】本题考查反比例函数的性质,k的几何意义.能够将三角形面积进行合理的转换是解题的关键.18、8【解析】
先根据三角形中位线定理得到EF的长,再根据直角三角形斜边上中线的性质,即可得到AE的长,进而得出计算结果.【详解】∵点E,F分别是BD,DC的中点,∴FE是△BCD的中位线,∴EF=BC=3,∵∠BAD=90°,AD=BC=6,AB=8,∴BD=10,又∵E是BD的中点,∴Rt△ABD中,AE=BD=5,∴AE+EF=5+3=8,故答案为:8【点睛】本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半.三、解答题(共78分)19、(1)y=x+1;(2)C(0,1);(3)1【解析】试题分析:(1)首先根据正比例函数解析式求得m的值,再进一步运用待定系数法求得一次函数的解析式;
(2)根据(1)中的解析式,令x=0求得点C的坐标;
(3)根据(1)中的解析式,令y=0求得点D的坐标,从而求得三角形的面积.试题解析:(1)∵正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),
∴2m=2,
m=1.
把(1,2)和(-2,-1)代入y=kx+b,得解得:则一次函数解析式是y=x+1;(2)令x=0,则y=1,即点C(0,1);(3)令y=0,则x=-1.则△AOD的面积=.【点睛】运用了待定系数法求函数解析式、直线与坐标轴的交点的求法.20、(1)t=3,ABQP是矩形;(2)t=,AQCP是菱形;(3)周长为:15cm,面积为:(cm2).【解析】
(1)当四边形ABQP是矩形时,BQ=AP,据此求得t的值;
(2)当四边形AQCP是菱形时,AQ=AC,列方程求得运动的时间t;
(3)菱形的四条边相等,则菱形的周长=4AQ,面积=CQ×AB.【详解】解:(1)由已知可得,BQ=DP=t,AP=CQ=6-t
在矩形ABCD中,∠B=90°,AD∥BC,
当BQ=AP时,四边形ABQP为矩形,
∴t=6-t,得t=3
故当t=3s时,四边形ABQP为矩形.
(2)AD∥BC,AP=CQ=6-t,∴四边形AQCP为平行四边形
∴当AQ=CQ时,四边形AQCP为菱形
即=6−t时,四边形AQCP为菱形,解得t=,
故当t=s时,四边形AQCP为菱形.
(3)当t=时,AQ=,CQ=,
则周长为:4AQ=4×=15cm
面积为:CQ•AB=×3=.【点睛】本题考查菱形、矩形的判定与性质.注意结合方程的思想解题.21、(3)b=2,A(6,0);(3)a的值为5或﹣3【解析】
(3)将点E的横坐标为3代入y=x+3求出点E的坐标,再代入y=﹣x+b中可求出b的值,然后令﹣x+b=0解之即可得出A点坐标;(3)由题可知,MN//OB,只需再求出当MN=OB时的a值,即可得出答案.【详解】(3)∵点E在直线l3上,且点E的横坐标为3,∴点E的坐标为(3,3),∵点E在直线l上,∴,解得:b=2,∴直线l的解析式为,当y=0时,有,解得:x=6,∴点A的坐标为(6,0);(3)如图所示,当x=a时,,,∴,当x=0时,yB=2,∴BO=2.∵BO∥MN,∴当MN=BO=2时,以点B、O、M、N为顶点的四边形为平行四边形,此时|3﹣a|=2,解得:a=5或a=﹣3.∴当以点B、O、M、N为顶点的四边形为平行四边形,a的值为5或﹣3.【点睛】本题是一次函数综合题.考查了一次函数图象点的坐标特征、待定系数法、平行四边形的判定等知识.用含a的式子表示出MN的长是解题的关键.22、(1)AB=10,CD=4.8;(2)BM=30厘米.【解析】
(1)在直角三角形ABC中,利用勾股定理求出AB的长,再利用面积法求出CD的长即可.(2)连接AC,BD交于点O,根据四边形ABCD是菱形求出AO的长,然后根据勾股定理求出BO的长,于是可以求出B、M两点的距离.【详解】解:(1)在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,由勾股定理得:AB=
=10,∵S△ABC=AB•CD=AC•BC,∴CD===4.8(2).连接AC,BD交于点O,∵四边形ABCD是菱形,∴AO=AC=12厘米,AC⊥BD,∴BO===5厘米,∴BD=2BO=10厘米,∴BM=3BD=30厘米.故答案为:(1)AB=10,CD=4.8;(2)BM=30厘米.【点睛】本题考查勾股定理,以及三角形面积求法,菱形的性质和勾股定理,熟练掌握勾股定理以及菱形的对角线互相垂直平分是解题的关键.23、(1)证明见解析;(2)∠B=70°.【解析】
(1)过C作CE∥AD于点E,可证明四边形ADCE是平行四边形,根据平行四边形的性质可得AD=CE,根据AD∥CE,可得∠A=∠CEB,根据等量代换可得∠CEB=∠B,进而得到CE=BC,从而可得AD=BC;(2)过C作CE∥AD,可证明四边形ADCE是平行四边形,根据平行四边形的性质可得AD=CE,再由条件AD=BC可得CE=BC,根据等边对等角可得∠B=∠CEB,再根据平行线的性质可得∠A=∠CEB,利用等量代换可得∠B=∠A.【详解】(1)证明:过C作CE∥AD于点E,∵AB∥DC,CE∥AD∴四边形ADCE是平行四边形,∴AD=CE,∵AD∥CE,∴∠A=∠CEB,∵∠A=∠B,∴∠CEB=∠B,∴CE=CB,∴AD=CB;(2)过C作CE∥AD于点E,∵AB∥DC,CE∥AD∴四边形ADCE是平行四边形,∴AD=CE,∵AD=BC,∴CE=CB,∴∠B=∠CEB,∵AD∥CE,∴∠A=∠CEB,∴∠B=∠A=70°.【点睛】本题主要考查平行四边形的判定及性质,等腰三角形的性质,掌握平行四边形的性质是解题的关键.24、(1)12+4(2)y=-【解析】
(1)根据题意可求A,B坐标,勾股定理可求AB长度,即可求△OAB的周长.
(2)把两个函数关系式联立成方程组求解,即为C点坐标,通过平移可求D点坐标,用待定系数法可求反比例函数解析式.【详解】(1)∵一次函数y=﹣x+4的图象与x轴y轴分别交于点A、点B,∴A(8,0),B(0,4)∴OA=8,OB=4在Rr△AOB中,AB==4,∴△OAB的周长=4+8+4=12+4(2)∵,∴∴C点坐标为(2,3)∵将点C向右平移1个单位,再向下平移6个单位得点D.∴D(3,﹣3)设过D点的反比例函数解析式y=,∴k=3×(﹣3)=﹣9∴反比例函数解析式y=.【点睛】本题考查了反比例函数与一次函数的交点问题,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.25、(1)当时,四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 普通资产转让合同范例
- 商务信息居间合同范例
- 快速转让合同范例
- 2024年度项目管理服务合同标的分析
- 2024农家院租赁合同(含节假日优惠)3篇
- 《α脑波音乐对游泳教学初学者恐惧情绪的影响研究》
- 《完全液相法制备CuFe浆状催化剂结构及其合成低碳醇性能的研究》
- 2024年版区域物流配送协议范本版B版
- 2023年河南省大学生乡村医生专项计划招聘选岗笔试真题
- 镜头采购技术服务合同
- 2024年就业保障型定向委培合同3篇
- 2024沪粤版八年级上册物理期末复习全册知识点考点提纲
- 人教版2024-2025学年第一学期八年级物理期末综合复习练习卷(含答案)
- 残联内部审计计划方案
- 2024-2030年中国漫画行业发展趋势与投资战略研究研究报告
- 傩戏面具制作课程设计
- 2024年大学生安全知识竞赛题库及答案(共190题)
- 2024中国华电集团限公司校招+社招高频难、易错点练习500题附带答案详解
- 吊装作业施工方案
- 智能工厂梯度培育行动实施方案
- 23J916-1 住宅排气道(一)
评论
0/150
提交评论