北京市教育院附中2024届八年级数学第二学期期末学业水平测试试题含解析_第1页
北京市教育院附中2024届八年级数学第二学期期末学业水平测试试题含解析_第2页
北京市教育院附中2024届八年级数学第二学期期末学业水平测试试题含解析_第3页
北京市教育院附中2024届八年级数学第二学期期末学业水平测试试题含解析_第4页
北京市教育院附中2024届八年级数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市教育院附中2024届八年级数学第二学期期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.菱形的两条对角线长分别为6㎝和8㎝,则这个菱形的面积为()A.48 B. C. D.182.若,则()A.7 B.-7 C.5 D.-53.如图,在中,,,,为边上一动点,于点,于点,则的最小值为()A.2.4 B.3 C.4.8 D.54.如图,将个全等的阴影小正方形摆放得到边长为的正方形,中间小正方形的各边的中点恰好为另外个小正方形的一个顶点,小正方形的边长为(、为正整数),则的值为()A. B. C. D.5.若,则的值为()A.1 B.-1 C.-7 D.76.如图,在中,,,平分交于点,点为的中点,连接,则的周长为()A.12 B.14 C.15 D.207.在△ABC中,AC9,BC12,AB15,则AB边上的高是()A.365 B.1225 C.98.下列图形中,可以看作是中心对称图形的是()A. B. C. D.9.要使分式有意义,则x的取值应满足()A.x≠4 B.x≠﹣1 C.x=4 D.x=﹣110.已知直线经过点,则直线的图象不经过第几象限()A.一 B.二 C.三 D.四11.在一个直角三角形中,已知两直角边分别为6cm,8cm,则下列结论不正确的是()A.斜边长为10cm B.周长为25cmC.面积为24cm2 D.斜边上的中线长为5cm12.函数y=中,自变量x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x≠2 D.x≤﹣2二、填空题(每题4分,共24分)13.如图,Rt△ABC中,∠ACB=90°,BC=AC=3,点D是BC边上一点,∠DAC=30°,点E是AD边上一点,CE绕点C逆时针旋转90°得到CF,连接DF,DF的最小值是___.14.化简得.15.某车间6名工人日加工零件数分别为6,10,8,10,5,8,则这组数据的中位数是_____________.16.小明利用公式计算5个数据的方差,则这5个数据的标准差的值是_____.17.直线y=x+2与x轴的交点坐标为___________.18.一组数据2,3,4,5,3的众数为__________.三、解答题(共78分)19.(8分)如图,等腰直角三角形中,,点是斜边上的一点,将沿翻折得,连接,若是等腰三角形,则的长是______.20.(8分)在正方形中,点是边的中点,点是对角线上的动点,连接,过点作交正方形的边于点;(1)当点在边上时,①判断与的数量关系;②当时,判断点的位置;(2)若正方形的边长为2,请直接写出点在边上时,的取值范围.21.(8分)如图,已知直线y=+1与x轴、y轴分别交于点A、B,以线AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90o、点P(x、y)为线段BC上一个动点(点P不与B、C重合),设△OPA的面积为S。(1)求点C的坐标;(2)求S关于x的函数解析式,并写出x的的取值范围;(3)△OPA的面积能于吗,如果能,求出此时点P坐标,如果不能,说明理由.22.(10分)如图,在平面直角坐标系中,直线与轴、轴分别交于,两点.(1)反比例函数的图象与直线交于第一象限内的,两点,当时,求的值;(2)设线段的中点为,过作轴的垂线,垂足为点,交反比例函数的图象于点,连接,,当以,,为顶点的三角形与以,,为顶点的三角形相似时,求的值.23.(10分)如图所示,ΔABC的顶点在8×8的网格中的格点上.(1)画出ΔABC绕点A逆时针旋转90°得到的ΔA(2)在图中确定格点D,并画出一个以A、B、C、D为顶点的四边形,使其为中心对称图形.24.(10分)甲、乙两组数据单位:如下表:甲11969147771010乙34581288131316(1)根据以上数据填写下表;

平均数众数中位数方差甲9乙9(2)根据以上数据可以判断哪一组数据比较稳定.25.(12分)小黄人在与同伴们研究日历时发现了一个有趣的规律:若用字母n表示平行四边形中左上角位置的数字,请你用含n的式子写出小黄人发现的规律,并加以证明.26.随着信息技术的高速发展,计算机技术已是每位学生应该掌握的基本技能.为了提高学生对计算机的兴趣,老师把甲、乙两组各有10名学生,进行电脑汉字输入速度比赛,各组参赛学生每分钟输入汉字个数统计如下表:输入汉字(个)132133134135136137甲组人数(人)101521乙组人数(人)014122(1)请你填写下表中甲班同学的相关数据.组众数中位数平均数()方差()甲组乙组134134.51351.8(2)若每分钟输入汉字个数136及以上为优秀,则从优秀人数的角度评价甲、乙两组哪个成绩更好一些?(3)请你根据所学的统计知识,从不同角度评价甲、乙两组学生的比赛成绩(至少从两个角度进行评价).

参考答案一、选择题(每题4分,共48分)1、B【解析】试题解析:根据菱形的面积公式:故选B.2、D【解析】

根据多项式乘多项式的运算法则进行计算,确定出p、q的值即可求出答案.【详解】因为,所以,所以故答案选D.【点睛】本题考查的是多项式乘多项式的运算,能够准确计算解题的关键.3、C【解析】

根据三个角都是直角的四边形是矩形,得四边形EDFB是矩形,根据矩形的对角线相等,得EF=BD,则EF的最小值即为BD的最小值,根据垂线段最短,知:BD的最小值即等于直角三角形ABC斜边上的高.【详解】如图,连接BD.∵在△ABC中,AB=8,BC=6,AC=10,∴AB2+BC2=AC2,即∠ABC=90°.又∵DE⊥AB于点E,DF⊥BC于点F,∴四边形EDFB是矩形,∴EF=BD.∵BD的最小值即为直角三角形ABC斜边上的高,即4.8,∴EF的最小值为4.8,故选C.【点睛】此题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质,要能够把要求的线段的最小值转换为便于分析其最小值的线段.4、B【解析】

通过小正方形的边长表示出大正方形的边长,再利用a、b为正整数的条件分析求解.【详解】解:由题意可知,∴∵a、b都是正整数∴=0,4a-2=2b∴a=4,b=7∴a+b=11故选:B.【点睛】本题考查了正方形的性质以及有理数、无理数的性质,表示出大正方形的边长利用有理数、无理数的性质求出a、b是关键.5、D【解析】

首先根据非负数的性质,可列方程组求出x、y的值,进而可求出x-y的值.【详解】由题意,得:,

解得;

所以x-y=4-(-3)=7;

故选:D.【点睛】此题主要考查非负数的性质:非负数的和为1,则每个非负数必为1.6、B【解析】

根据AB=AC,可知△ABC为等腰三角形,由等腰三角形三线合一的性质可得AD⊥BC,AD为△ABC的中线,故,∠ADC=90°,又因为点E为AC的中点,可得,从而可以得到△CDE的周长.【详解】解:∵AB=AC,

∴△ABC是等腰三角形.

又∵AD平分∠BAC,

∴AD⊥BC,AD是△ABC的中线,

∴∠ADC=90°,,在中,点E为AC的中点,,

∵AB=AC=10,BC=8,

∴,.

∴△CDE的周长为:.故选:B.【点睛】本题考查了等腰三角形三线合一的性质,直角三角形斜边上的中线等于斜边的一半的性质,关键是正确分析题目,从中得出需要的信息.7、A【解析】

首先由题目所给条件判断△ABC是直角三角形,再按照面积法求解即可.【详解】解:∵AC2+B∴AC∴△ABC是直角三角形且∠C=90∴由直角三角形面积的计算方法S=12AC·BC=12故选A.【点睛】本题考查了勾股定理的逆定理和用面积法求直角三角形斜边上的高的知识,属于基础题型.8、A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.9、A【解析】

根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】由题意知x-4≠0,

解得:x≠4,

故选:A.【点睛】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.10、B【解析】

把点p代入求出b值,再观察k>0,b<0,根据一次函数图象与k,b的关系得出答案.【详解】因为直线经过点,所以b=-3,然后把b=-3代入,得直线经过一、三、四象限,所以直线的图象不经过第二象限.故选:B【点睛】本题考查一次函数y=kx=b(k≠0)图象与k,b的关系(1)图象是过点(-,0),(0,b)的一条直线(2)当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;当k<0,b>0时,图象过一、二、四象限;当k<0,b<0时,图像过二、三、四象限.11、B【解析】试题解析:∵在一个直角三角形中,已知两直角边分别为6cm,8cm,∴直角三角形的面积=×6×8=24cm2,故选项C不符合题意;∴斜边故选项A不符合题意;∴斜边上的中线长为5cm,故选项D不符合题意;∵三边长分别为6cm,8cm,10cm,∴三角形的周长=24cm,故选项B符合题意,故选B.点睛:直角三角形斜边的中线等于斜边的一半.12、B【解析】依题意,得x+2≥0,解得:x≥-2.故选B.二、填空题(每题4分,共24分)13、.【解析】

先依据条件判定△ACE≌△BCF,可得∠CBF=∠CAE=30°,即可得到点F在射线BF上,由此可得当DF⊥BF时,DF最小,依据∠DBF=30°,即可得到DF=BD=【详解】由旋转可得,FC=EC,∠ECF=90°,又∵∠ACB=90°,BC=AC=3,∴∠CAE=∠CBF,∴△ACE≌△BCF,∴∠CBF=∠CAE=30°,∴点F在射线BF上,如图,当DF⊥BF时,DF最小,又∵Rt△ACD中,∠CAD=30°,AC=3=BC,∴CD=,∴BD=3﹣,又∵∠DBF=30°,∴DF=BD=,故答案为.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,得到点F的运动轨迹是本题的难点.14、.【解析】试题分析:原式=.考点:分式的化简.15、1.【解析】

根据这组数据是从大到小排列的,求出最中间的两个数的平均数即可.【详解】解:将数据从小到大重新排列为:5、6、1、1、10、10,

所以这组数据的中位数为=1.

故答案为:1.【点睛】本题考查中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.16、【解析】

先根据平均数的定义求出,再代入公式求出方差,然后求出方差的算术平方根即标准差的值.【详解】解:根据题意知,,则,.故答案为.【点睛】本题考查了标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.也考查了平均数与方差,解题的关键是熟练掌握基本知识,属于中考常考题型.17、(-2,0)【解析】

令纵坐标为0代入解析式中即可.【详解】当y=0时,0=x+2,解得:x=-2,∴直线y=x+2与x轴的交点坐标为(-2,0).点睛:本题主要考查了一次函数与坐标轴的交点问题,关键在于理解在x轴上的点的纵坐标为0.18、1.【解析】

众数又是指一组数据中出现次数最多的数据,本题根据众数的定义就可以求解.【详解】本题中数据1出现了2次,出现的次数最多,所以本题的众数是1.故答案为1.【点睛】众数是指一组数据中出现次数最多的数据.三、解答题(共78分)19、或【解析】

分两种情形:①如图1中,当ED=EA时,作DH⊥BC于H.②如图2中,当AD=AE时,分别求解.【详解】如图1中,当ED=EA时,作DH⊥BC于H.∵CB=CA,∠ACB=90°,∴∠B=∠CAB=45°,由翻折不变性可知:∠CED=∠B=45°,∴A,C,D,E四点共圆,∵ED=EA,∴∠ACE=∠ECD=∠BCD=30°,设BH=DH=x,则CH=x,∵BC=,∴x+x=,∴x=.∴BD=x=-1.如图2中,当AD=AE时,同法可证:∠ACD=∠ACE,∵∠BCD=∠DCE,∴∠BCD=2∠ACD,∴∠BCD=60°,设BH=DH=x,则CH=x,∵BC=,∴x+x=,∴x=,∴BD=x=3-.综上所述,满足条件的BD的值为-1或3-.故答案为:-1或3-.【点睛】本题考查翻折变换,等腰直角三角形的性质,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.20、(1)①,理由详见解析;②点位于正方形两条对角线的交点处(或中点出),理由详见解析;(2)【解析】

(1)①过点作于点,于点,通过证可得ME=MF;②点位于正方形两条对角线的交点处时,,可得;(2)当点F分别在BC的中点处和端点处时,可得M的位置,进而得出AM的取值范围。【详解】解:(1)。理由是:过点作于点,于点在正方形中,矩形为正方形又②点位于正方形两条对角线的交点处(或中点处)如图,是的中位线,又,此时,是中点,且,,(2)当点F在BC中点时,M在AC,BD交点处时,此时AM最小,AM=AC=;当点F与点C重合时,M在AC,BD交点到点C的中点处,此时AM最大,AM=。故答案为:【点睛】本题是运动型几何综合题,考查了全等三角形、正方形、命题证明等知识点.解题要点是:(1)明确动点的运动过程;(2)明确运动过程中,各组成线段、三角形之间的关系;(3)添加恰当的辅助线是解题的关键。21、(1)(4,3);(2)S=,0<x<4;(3)不存在.【解析】

(1)直线y=+1与x轴、y轴分别交于点A、B,可得点A、B的坐标,过点C作CH⊥x轴于点H,如图1,易证△AOB≌△CHA,从而得到AH=OB、CH=AO,就可得到点C的坐标;(2)易求直线BC解析式,过P点作PG垂直x轴,由△OPA的面积=即可求出S关于x的函数解析式.(3)当S=求出对应的x即可.【详解】解:(1)∵直线y=+1与x轴、y轴分别交于点A、B,∴A点(3,0),B点为(0,1),如图:过点C作CH⊥x轴于点H,则∠AHC=90°.

∴∠AOB=∠BAC=∠AHC=90°,

∴∠OAB=180°-90°-∠HAC=90°-∠HAC=∠HCA.

在△AOB和△CHA中,,

∴△AOB≌△CHA(AAS),

∴AO=CH=3,OB=HA=1,

∴OH=OA+AH=4∴点C的坐标为(4,3);(2)设直线BC解析式为y=kx+b,由B(0,1),C(4,3)得:,解得,∴直线BC解析式为,过P点作PG垂直x轴,△OPA的面积=,∵PG=,OA=3,∴S==;点P(x、y)为线段BC上一个动点(点P不与B、C重合),∴0<x<4.∴S关于x的函数解析式为S=,x的的取值范围是0<x<4;(3)当s=时,即,解得x=4,不合题意,故P点不存在.【点睛】本题主要考查了一次函数图象上点的坐标特征、全等三角形的判定与性质、勾股定理、三角形的面积公式等知识,构造全等三角形是解决第(1)小题的关键.22、(1);(2)或.【解析】

(1)如图作DH⊥OA于H.由DH∥OB,可得,由此求出点D坐标,即可解决问题;(2)如图2中,观察图象可知满足条件的点Q在点P的下方.分两种情形①当△QOP∽△POB时,②当△OPQ′∽△POB时,分别求出点Q、Q′的坐标即可解决问题;【详解】解:(1)如图作于.∵直线与轴、轴分别交于,两点,∴,,∴,,∵,∴,∴,,∴,∴,∵点在上,∴.(2)如图2中,观察图象可知满足条件的点在点的下方.①当时,,∴,∴,∴,∵点在上,∴.②当时,同法可得,∵点在上,∴.【点睛】本题考查反比例函数综合题、平行线分线段成比例定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会用分类讨论的首先思考问题,属于中考压轴题.23、(1)见解析;(2)见解析.【解析】

(1)由题意可知旋转中心、旋转角、旋转方向,根据旋转的画图方法作图即可;(2)如图有三种情况,构造平行四边形即可.【详解】解:(1)如图ΔAB(2)如图,D、D’、D’’均为所求.【点睛】本题考查了图形的旋转及中心对称图形,熟练掌握作旋转图形的方法及中心对称图形的定义是解题的关键.24、(1)答案见解析;(2)甲组数据较稳定【解析】

(1)根据图表按照平均数,众数,中位数的定义一一找出来填表即可.(2)此问先比较平均数,如果平均数相同再比较方差.【详解】(1)(2)∵甲、乙两组数据的平均数相同,且<,∴甲组数据较稳定.【点睛】此题考查数据的收集和处理,包含内容有众

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论