江苏省启东市天汾初级中学2024年数学八年级下册期末复习检测试题含解析_第1页
江苏省启东市天汾初级中学2024年数学八年级下册期末复习检测试题含解析_第2页
江苏省启东市天汾初级中学2024年数学八年级下册期末复习检测试题含解析_第3页
江苏省启东市天汾初级中学2024年数学八年级下册期末复习检测试题含解析_第4页
江苏省启东市天汾初级中学2024年数学八年级下册期末复习检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省启东市天汾初级中学2024年数学八年级下册期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知是完全平方式,则的值为()A.2 B.4 C. D.2.已知点M(1-a,a+2)在第二象限,则a的取值范围是()A.a>-2 B.-2<a<1 C.a<-2 D.a>13.若正比例函数y=(1﹣m)x中y随x的增大而增大,那么m的取值范围()A.m>0 B.m<0 C.m>1 D.m<14.已知一元二次方程,则它的一次项系数为()A. B. C. D.5.随着私家车的增加,交通也越来越拥挤,通常情况下,某段公路上车辆的行驶速度(千米/时)与路上每百米拥有车的数量x(辆)的关系如图所示,当x≥8时,y与x成反比例函数关系,当车速度低于20千米/时,交通就会拥堵,为避免出现交通拥堵,公路上每百米拥有车的数量x应该满足的范围是()A.x<32 B.x≤32 C.x>32 D.x≥326.不等式组的最小整数解是()A.0 B.-1 C.1 D.27.若式子在实数范围内有意义,则x的取值范围是()A.x> B.x> C.x≥ D.x≥8.不能使四边形ABCD是平行四边形是条件是()A.AB=CD,BC=AD B.AB=CD,C. D.AB=CD,9.如图,已知△ABC和△PBD都是正方形网格上的格点三角形(顶点为网格线的交点),要使ΔABC∽ΔPBD,则点P的位置应落在A.点上 B.点上 C.点上 D.点上10.调查50名学生的年龄,列频数分布表时,这些学生的年龄落在5个小组中,第一、二、三、五组数据个数分别是2,8,15,5,则第四组的频数是()A.20 B.30 C.0.4 D.0.611.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.= B.=C.= D.=12.在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3 B.﹣5 C.7 D.﹣3或﹣5二、填空题(每题4分,共24分)13.若a,b是直角三角形的两个直角边,且,则斜边c=______.14.数据5,5,6,6,6,7,7的众数为_____15.如图,直线l1∶y=ax与直线l2∶y=kx+b交于点P,则不等式ax>kx+b的解集为_________.16.在平面直角坐标系中,将函数的图象向上平移6个单位长度,则平移后的图象与轴的交点坐标为__________.17.如图,点在双曲线上,为轴上的一点,过点作轴于点,连接、,若的面积是3,则__.18.如图,点A是反比例函数y=kx图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=________三、解答题(共78分)19.(8分)已知关于的一元二次方程.(1)求证:无论取何实数,该方程总有两个不相等的实数根;(2)若方程的一根为3,求另一个根.20.(8分)计算:(1)(2)(4)÷221.(8分)如图,矩形ABCD中,AB=9,AD=1.E为CD边上一点,CE=2.点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.(1)求AE的长;(2)当t为何值时,△PAE为直角三角形?22.(10分)地铁检票处有三个进站闸口A、B、C.①人选择A进站闸口通过的概率是________;②两个人选择不同进站闸口通过的概率.(用树状图或列表法求解)23.(10分)某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):度数

9

10

11

天数

3

1

1

(1)求这5天的用电量的平均数;(2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.24.(10分)如图:BE、CF是锐角△ABC的两条高,M、N分别是BC、EF的中点,若EF=6,BC=24.(1)证明:∠ABE=∠ACF;

(2)判断EF与MN的位置关系,并证明你的结论;(3)求MN的长.25.(12分)为了加强公民的节水意识,合理利用水资源,各地采取价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年9,10月份的用水量和所交水费如下表所示:月份用水量(m3收费(元)957.510927设某户每月用水量x(立方米),应交水费y(元)1求a,c的值,当x≤6,x>6时,分别写出y与x的函数关系式.2若该户11月份用水量为8立方米,求该11月份水费多少元?26.某地至北京的高铁里程约为600km,甲、乙两人从此地出发,分别乘坐高铁A与高铁B前往北京.已知A车的平均速度比B车的平均速度慢50km/h,A车的行驶时间比B车的行驶时间多20%,B车的行驶的时间为多少小时?

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据完全平方公式的形式,可得答案.【详解】解:已知=x²+4mx+4²是完全平方式,

∴4m=±8m=2或m=-2,

故选:C.【点睛】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏掉.2、D【解析】因为点M(1−a,a+2)在第二象限,∴1−a<0,解得:a>1,故选D.3、D【解析】

先根据正比例函数的性质列出关于m的不等式,求出m的取值范围即可.【详解】解:∵正比例函数y=(1﹣m)x中,y随x的增大而增大,∴1﹣m>0,解得m<1.故选D.【点睛】本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k>0时,y随x的增大而增大.4、D【解析】

根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项可得答案.【详解】解:一元二次方程,则它的一次项系数为-2,故选:D.【点睛】此题主要考查了一元二次方程的一般形式,关键是掌握一元二次方程的一般形式为ax2+bx+c=0(a≠0).5、B【解析】

利用已知反比例函数图象过(8,80),得出其函数解析式,再利用y=20时,求出x的最值,进而求出x的取值范围.【详解】解:设反比例函数的解析式为:,则将(8,80),代入,得:k=xy=8×80=640,∴反比例函数的解析式为:故当车速度为20千米/时,则,解得:x=1,故高架桥上每百米拥有车的数量x应该满足的范围是:0<x≤1.故答案为x≤1.【点睛】此题主要考查了反比例函数的应用,根据题意得出函数解析式是解题关键.6、A【解析】

解:解不等式组可得,在这个范围内的最小整数为0,所以不等式组的最小整数解是0,故选A7、D【解析】分析:根据二次根式有意义的条件:被开方数是非负数作答.详解:根据二次根式的意义,被开方数2x-3≥0,解得x≥.故选D.点睛:本题考查了二次根式有意义的条件,解题的关键是知道二次根式的被开方数是非负数.8、D【解析】

根据平行四边形的判定即可得.【详解】A、,即两组对边分别相等,能使四边形ABCD是平行四边形,此项不符题意B、,即一组对边平行且相等,能使四边形ABCD是平行四边形,此项不符题意C、,即两组对边分别平行,能使四边形ABCD是平行四边形,此项不符题意D、,即一组对边相等,另一组对边平行,这个四边形有可能是等腰梯形,则不能使四边形ABCD是平行四边形,此项符合题意故选:D.【点睛】本题考查了平行四边形的判定,熟记平行四边形的判定方法是解题关键.9、B【解析】

由图可知∠BPD一定是钝角,若要△ABC∽△PBD,则PB、PD与AB、AC的比值必须相等,可据此进行判断.【详解】解:由图知:∠BAC是钝角,又△ABC∽△PBD,则∠BPD一定是钝角,∠BPD=∠BAC,又BA=1,AC=1,∴BA:AC=1:,∴BP:PD=1:或BP:PD=:1,只有P1符合这样的要求,故P点应该在P1.

故选B.【点睛】此题考查了相似三角形的性质,以及勾股定理的运用,相似三角形的对应角相等,对应边成比例,书写相似三角形时,对应顶点要对应.熟练掌握相似三角形的性质是解本题的关键10、A【解析】

根据频数的定义:频数表是数理统计中由于所观测的数据较多,为简化计算,将这些数据按等间隔分组,然后按选举唱票法数出落在每个组内观测值的个数,称为(组)频数。一共5个频数,已知总频数为50,四个频数已知,即可求出其余的一个频数.【详解】一共5个频数,已知总频数为50,第一、二、三、五组数据个数分别是2,8,15,5,则第四组的频数是50-2-8-15-5=20,故答案为A.【点睛】此题主要考查对频数定义的理解,熟练掌握即可得解.11、B【解析】

设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.【详解】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得:.故选B.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.12、A【解析】

分三种情形讨论求解即可解决问题;【详解】解:对于函数y=|x﹣a|,最小值为a+1.情形1:a+1=0,a=﹣1,∴y=|x+1|,此时x=﹣1时,y有最小值,不符合题意.情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+1,得到a=﹣2.∴y=|x+2|,符合题意.情形2:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+1,方程无解,此种情形不存在,综上所述,a=﹣2.故选A.【点睛】本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.二、填空题(每题4分,共24分)13、5【解析】

根据绝对值的性质和二次根式的性质,求出a,b的值,再利用勾股定理即可解答.【详解】∵∴a-3=0,b-4=0解得a=3,b=4,∵a,b是直角三角形的两个直角边,∴c==5.故答案为:5.【点睛】此题考查绝对值的性质和二次根式的性质,勾股定理,解题关键在于求出ab的值.14、6【解析】

根据众数的定义可得结论.【详解】解:数据5,5,6,6,6,7,7,其中数字5出现2次,数字6出现3次,数字7出现2次,所以众数为6.故答案为:6【点睛】本题主要考查众数的定义,解题的关键是掌握众数的定义:一组数据中出现次数最多的数据叫做众数.15、x>1;【解析】

观察图象,找出直线l1∶y=ax在直线l2∶y=kx+b上方部分的x的取值范围即可.【详解】∵直线l1∶y=ax与直线l2∶y=kx+b交于点P的横坐标为1,∴不等式ax>kx+b的解集为x>1,故答案为x>1.【点睛】本题考查了一次函数与一元一次不等式的关系,正确把握数形结合思想是解此类问题的关键.16、.【解析】

先根据平移特点求出新函数解析式,然后再求解新函数与x轴的交点坐标.【详解】解:由“上加下减”的平移规律可知:将函数的图象向上平移6个单位长度所得到的的新函数的解析式为:,令,得:,解得:,∴与轴的交点坐标为,故答案为:.【点睛】本题考查的是一次函数的图象与几何变换,熟知平移的规律——上加下减,左加右减是解答此题的关键.17、-6【解析】

连结OA,如图,利用三角形面积公式得到S△OAC=S△CAB=3,再根据反比例函数的比例系数k的几何意义得到,然后去绝对值即可得到满足条件的k的值.【详解】解:连结,如图,轴,,,而,,,.故答案为:.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.18、-1【解析】试题分析:由于点A是反比例函数y=kx考点:反比例函数三、解答题(共78分)19、(1)见解析;(2)-1.【解析】

(1)根据方程的系数结合根的判别式即可得出△=m2+12≥12,由此即可得出结论.

(2)将x=3代入原方程求出m值,再将m得值代入原方程利用十字相乘法即可求出方程的另一根,或者直接利用两根之积等于-3可得.【详解】解:(1)∵在方程x2-mx-3=0中,△=(-m)2-4×1×(-3)=m2+12≥12,

∴对于任意实数m,方程总有两个不相等的实数根.

(2)方法一:将x=3代入x2-mx-3=0中,得:9-3m-3=0,

解得:m=2,

当m=2时,原方程为x2-2x-3=(x+1)(x-3)=0,

解得:x1=-1,x2=3,

∴方程的另一根为-1.

方法二:设方程的另一个根为a,

则3a=-3,

解得:a=-1,

即方程的另一根为-1.【点睛】本题考查了根的判别式及根与系数的关系,掌握x1+x2=-,x1•x2=与判别式的值与方程的解得个数的关系是解题的关键.20、(1)4+5(2)2+2【解析】

(1)先进行乘法运算,然后把化简后合并即可.(2)运用实数运算、二次根式化简,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】(1)原式=(2)【点睛】此题考查二次根式的混合运算,实数运算、二次根式化简,掌握运算法则是解题关键21、(1)5;(2)当t=2或t=时,△PAE为直角三角形;【解析】

(1)在直角△ADE中,利用勾股定理进行解答;

(2)需要分类讨论:AE为斜边和AP为斜边两种情况下的直角三角形;【详解】解:(1)∵矩形ABCD中,AB=9,AD=1,∴CD=AB=9,∠D=90°,∴DE=9﹣2=3,∴AE==5;(2)①若∠EPA=90°,t=2;②若∠PEA=90°,(2﹣t)2+12+52=(9﹣t)2,解得t=.综上所述,当t=2或t=时,△PAE为直角三角形;【点睛】本题考查了四边形综合题,综合勾股定理,直角三角形的性质,一元二次方程的应用等知识点,要注意分类讨论,以防漏解.22、(1);(2)【解析】

(1)直接利用概率公式计算可得;

(2)画树状图展示所有9种等可能的结果数,再找出选择不同通道通过的结果数,然后根据概率公式求解.【详解】解:(1)选择A通道通过的概率是;故答案为:(2)画树形图如下;由图中可知,共有9种等可能情况,其中选择不同通道通过的有6种结果,

所以选择不同通道通过的概率为【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.23、(1)1.6度;(2)1度;1度;(3)2.2度.【解析】

(1)用加权平均数的计算方法计算平均用电量即可;(2)分别利用众数、中位数及极差的定义求解即可;(3)用班级数乘以日平均用电量乘以天数即可求得总用电量.【详解】(1)平均用电量为:(1×3+10×1+11×1)÷5=1.6度;(2)1度出现了3次,最多,故众数为1度;第3天的用电量是1度,故中位数为1度;(3)总用电量为22×1.6×36=2.2度.24、(1)证明见解析;(2)垂直平分.(3).【解析】

(1)依据、是锐角的两条高,可得,,进而得出;(2)连接、,根据直角三角形斜边上的中线等于斜边的一半可得,再根据等腰三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论