广东省高州市2024届八年级下册数学期末调研试题含解析_第1页
广东省高州市2024届八年级下册数学期末调研试题含解析_第2页
广东省高州市2024届八年级下册数学期末调研试题含解析_第3页
广东省高州市2024届八年级下册数学期末调研试题含解析_第4页
广东省高州市2024届八年级下册数学期末调研试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省高州市2024届八年级下册数学期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.若CD=3,BC+AB=16,则△ABC的面积为()A.16 B.18 C.24 D.322.将直线y=2x﹣1向上平移2个单位长度,可得直线的解析式为()A.y=2x﹣3 B.y=2x﹣2 C.y=2x+1 D.y=2x3.一组数据2,7,6,3,4,7的众数和中位数分别是()A.7和4.5 B.4和6 C.7和4 D.7和54.一个多边形的每一个内角均为,那么这个多边形是()A.七边形 B.六边形 C.五边形 D.正方形5.已知实数a、b,若a>b,则下列结论正确的是()A.a+3<b+3 B.a-4<b-4 C.2a>2b D.6.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟 B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟 D.便利店离小丽家的距离为1000米7.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC,从以上5个条件中任选2个条件为一组,能判定四边形ABCD是平行四边形的有()组.A.4 B.5 C.6 D.78.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为()A.16 B.14 C.12 D.69.在中,,,,点为边上一动点,于点,于点,则的最小值为()A. B. C. D.10.一条直线y=kx+b,其中k+b=﹣5、kb=6,那么该直线经过A.第二、四象限 B.第一、二、三象限 C.第一、三象限 D.第二、三、四象限二、填空题(每小题3分,共24分)11.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩________分.12.用科学记数法表示______.13.如图,矩形ABCD中,,,CB在数轴上,点C表示的数是,若以点C为圆心,对角线CA的长为半径作弧交数轴的正半轴于点P,则点P表示的数是______.14.用换元法解方程+3=0时,如果设=y,那么将原方程变形后所得的一元二次方程是_____.15.若,则__________.16.如图,点E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下面四个结论:(1)AE=BF,(2)AE⊥BF,(3)AO=OE,(4)S△AOB=S四边形DEOF,其中正确结论的序号是_____.17.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为_______元/千克.18.如图,∠1,∠2,∠3是五边形ABCDE的3个外角,若,则________.三、解答题(共66分)19.(10分)如图中的虚线网格我们称为正三角形网格,它的每一个小三角形都是边长为1个单位长度的正三角形,这样的三角形称为单位正三角形.(1)图①中,已知四边形ABCD是平行四边形,求△ABC的面积和对角线AC的长;(2)图②中,求四边形EFGH的面积.20.(6分)有一块薄铁皮ABCD,∠B=90°,各边的尺寸如图所示,若对角线AC剪开,得到的两块都是“直角三角形”形状吗?为什么?21.(6分)一个容器盛满纯药液,第一次倒出一部分纯药液后,用水加满;第二次又倒出同样多的药液,若此时容器内剩下的纯药液是,则每次倒出的液体是多少?22.(8分)关于的一元二次方程为(1)求证:无论为何实数,方程总有实数根;(2)为何整数时,此方程的两个根都为正数.23.(8分)先化简,再求值:(1﹣)÷.其中a从0,1,2,﹣1中选取.24.(8分)在期末考试来临之际,同学们都进入紧张的复习阶段,为了了解同学们晚上的睡眠情况,现对年级部分同学进行了调查统计,并制成如下两幅不完整的统计图:(其中A代表睡眠时间8小时左右,B代表睡眠时间6小时左右,C代表睡眠时间4小时左右,D代表睡眠时间5小时左右,E代表睡眠时间7小时左右),其中扇形统计图中“E”的圆心角为90°,请你结合统计图所给信息解答下列问题:(1)共抽取了名同学进行调查,同学们的睡眠时间的中位数是小时左右,并将条形统计图补充完整;(2)请你估计年级每个学生的平均睡眠时间约多少小时?25.(10分)(1)计算:()﹣()+2(2)已知:x=﹣1,求代数式x2+2x﹣2的值.26.(10分)如图,在矩形ABCD中,AB=4,AD=10,点E在AD边上,已知B、E两点关于直线l对称,直线l分别交AD、BC边于点M、N,连接BM、NE.(1)求证:四边形BMEN是菱形;(2)若DE=2,求NC的长.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再根据S△ABC=S△BCD+S△ABD列式计算即可得解.【详解】如图,过点D作DE⊥AB于E,∵∠ACB=90°,BD平分∠ABC,∴DE=CD=3,∴S△ABC=S△BCD+S△ABD=BC⋅CD+AB⋅DE=(BC+AB)×3∵BC+AB=16,∴△ABC的面积=×16×3=24.故选C.【点睛】本题考查角平分线的性质定理,作辅助线是解题关键.2、C【解析】

根据一次函数的平移规律即可解答.【详解】∵原直线的k=2,b=﹣1;向上平移2个单位长度,得到了新直线,∴新直线的k=2,b=﹣1+2=1.∴新直线的解析式为y=2x+1.故选C.【点睛】本题考查了一次函数的平移规律,熟知一次函数的平移规律是解决问题的关键.3、D【解析】试题解析:这组数据按照从小到大的顺序排列为:2,3,4,6,7,7,则众数为:7,中位数为:故选D.考点:1.众数;2.中位数.4、B【解析】分析:此题主要考查了多边形的内角与外角的关系,先求出这个多边形的每一个外角的度数,再用360°除以一个外角的度数即可得到边数.详解:∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°-120°=60°,∴边数n=360°÷60°=6.故选B..点睛:此题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.即先求出这个多边形的每一个外角的度数,再用360°除即可得到边数.5、C【解析】

根据不等式的性质逐个判断即可.(1不等式两边同时加或减去同一个整式,不等号方向不变;2不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;3不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变.)【详解】根据a>b可得A错误,a+3>b+3B错误,a-4>b-4C正确.D错误,故选C.【点睛】本题主要考查不等式的性质,属于基本知识,应当熟练掌握.6、C【解析】解:A.小丽从家到达公园共用时间20分钟,正确;B.公园离小丽家的距离为2000米,正确;C.小丽在便利店时间为15﹣10=5分钟,错误;D.便利店离小丽家的距离为1000米,正确.故选C.7、C【解析】分析:根据平行四边形的判定来进行选择.①两组对边分别平行的四边形是平行四边形;②两组对角分别平行的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形;⑤对角线互相平分的四边形是平行四边形.详解:共有6组可能:①②;①③;①④;①⑤;②⑤;④⑤.

选择①与②:∵AB∥CD,

∴∠BAO=∠DCO,∠ABO=∠CDO,

在△AOB与△COD中,,

∴△AOB≌△COD,

∴AB=CD,

∴四边形ABCD为平行四边形.①与③(根据一组对边平行且相等)

①与④:∵∠BAD=∠DCB

∴AD∥BC

又AB∥DC

根据两组对边分别平行可推出四边形ABCD为平行四边形.

①与⑤,根据定义,两组对边分别平行的四边形是平行四边形;②与⑤:∵AD∥BC

OA=OC

∴△AOD≌△COB

故AD=BC,四边形ABCD为平行四边形.

④与⑤:根据两组对边分别平行可推出四边形ABCD为平行四边形.共有6种可能.故选C.点睛:本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.8、C【解析】

先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为△ABC中位线,故△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.【详解】∵AB=AC=15,AD平分∠BAC,∴D为BC中点,∵点E为AC的中点,∴DE为△ABC中位线,∴DE=AB,∴△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.∴AB+AC+BC=42,∴BC=42-15-15=12,故选C.【点睛】此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.9、B【解析】

根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.【详解】解:∵在△ABC中,AB=3,AC=1,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=EF=AP.因为AP的最小值即为直角三角形ABC斜边上的高,即2.1,∴EF的最小值是2.1.故选B.【点睛】题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质,要能够把要求的线段的最小值转换为便于分析其最小值的线段.10、D【解析】∵k+b=-5,kb=6,∴kb是一元二次方程的两个根.解得,或.∴k<1,b<1.一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.∴直线y=kx+b经过二、三、四象限.故选D.二、填空题(每小题3分,共24分)11、1【解析】

根据题意得:85×+80×+90×=17+24+45=1(分),答:小王的成绩是1分.故答案为1.12、【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】0.00000021的小数点向右移动1位得到2.1,所以0.00000021用科学记数法表示为2.1×10-1,故答案为2.1×10-1.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13、【解析】

利用勾股定理求AC,再求出PO,从而求出P所表示的数.【详解】解:由勾股定理可得:AC=,因为,PC=AC,所以,PO=,所以,点P表示的数是.故答案为【点睛】本题考核知识点:在数轴上表示无理数.解题关键点:利用勾股定理求出线段长度.14、3y2+3y﹣2=1【解析】

设,则原方程化为3y﹣+3=1,,再整理即可.【详解】﹣+3=1,设=y,则原方程化为:3y﹣+3=1,即3y2+3y﹣2=1,故答案为:3y2+3y﹣2=1.【点睛】本题考查了解分式方程,能够正确换元是解此题的关键.15、【解析】

利用设k法,分别将a,b都设出来,再代入中化简即可得出答案.【详解】解:设a=2k,b=5k∴故答案为:.【点睛】本题考查了比例的性质,属于基础知识,比较简单.16、(1)、(2)、(4).【解析】∵四边形ABCD是正方形,

∴AB=AD=CD=BC,∠BAD=∠ADC=90°.

∵CE=DF,

∴AD-DF=CD-CE,

即AF=DE.

在△BAF和△ADE中,,∴△BAF≌△ADE(SAS),

∴AE=BF,S△BAF=S△ADE,∠ABF=∠DAE,

∴S△BAF-S△AOF=S△ADE-S△AOF,

即S△AOB=S四边形DEOF.

∵∠ABF+∠AFB=90°,

∴∠EAF+∠AFB=90°,

∴∠AOF=90°,

∴AE⊥BF;

连接EF,在Rt△DFE中,∠D=90°,

∴EF>DE,

∴EF>AF,

若AO=OE,且AE⊥BF;

∴AF=EF,与EF>AF矛盾,

∴假设不成立,

∴AO≠OE.

∴①②④是正确的,

故答案是:①②④.【点睛】本题考查了正方形的性质的运用,全等三角形的判定与性质的运用,三角形的面积关系的运用及直角三角形的性质的运用,在解答中求证三角形全等是关键.17、1.【解析】

解:设售价至少应定为x元/千克,依题可得方程x(1-5%)×80≥760,解得x≥1故答案为1.【点睛】本题考查一元一次不等式的应用.18、220【解析】

先求出∠A与∠B的外角和,再根据外角和进行求解.【详解】∵∴∠A与∠B的外角和为360°-220°=140°,∵∠1,∠2,∠3是五边形ABCDE的3个外角,∴360°-140°=220°,故填:220°.【点睛】此题主要考查多边形的外角,解题的关键是熟知多边形的外角和为360°.三、解答题(共66分)19、(1)△ABC的面积为,AC=;(2)四边形EFGH的面积为.【解析】

(1)首先过点A作AK⊥BC于K,由每一个小三角形都是边长为1个单位长度的正三角形,可求得每一个小正三角形的高为,进一步可求得△ABC的面积,然后由勾股定理可求得对角线AC的长;(2)过点E作EP⊥FH于P,则四边形EFGH的面积=2S△EFH=2××EP×FH=EP×FH,再代入数据计算即可得出结果.【详解】解:(1)如图③,过点A作AK⊥BC于K,∵每一个小三角形都是边长为1个单位长度的正三角形,∴每一个小正三角形的高为,∴.∴△ABC的面积=;∵BK=,∴.∴.(2)如图④,过点E作EP⊥FH于P,则EP=,由题意可得四边形EFGH的面积=2S△EFH=2××EP×FH=EP×FH=.【点睛】此题考查了平行四边形的性质、勾股定理和等边三角形的性质,解题的关键正确理解题意,作出所需辅助线,注意数形结合去思考分析,熟知等边三角形的性质和有关计算.20、是,理由见解析.【解析】

先在△ABC中,由∠B=90°,可得△ABC为直角三角形;根据勾股定理得出AC2=AB2+BC2=8,那么AD2+AC2=9=DC2,由勾股定理的逆定理可得△ACD也为直角三角形.【详解】都是直角三角形.理由如下:连结AC.在△ABC中,∵∠B=90°,∴△ABC为直角三角形;∴AC2=AB2+BC2=8,又∵AD2+AC2=1+8=9,而DC2=9,∴AC2+AD2=DC2,∴△ACD也为直角三角形.考点:1.勾股定理的逆定理;2.勾股定理.21、21【解析】

设每次倒出药液为x升,第一次倒出后剩下的纯药液为63(1-),第二次加满水再倒出x升溶液,剩下的纯药液为63(1-)(1-)又知道剩下的纯药液为28升,列方程即可求出x.【详解】设每次倒出液体x升,63(1-)2=28,x1=105(舍),x2=21.答:每次倒出液体21升.【点睛】本题考查了一元二次方程的应用,根据题目给出的条件,找出合适的等量关系是解题的关键.22、(1)为任何实数方程总有实数根;(2).【解析】

(1)表示出根的判别式,得到根的判别式大于0,进而确定出方程总有两个不相等的实数根;(2)根据根与系数的关系列出方程,结合题目条件求解即可.【详解】(1)∴为任何实数方程总有实数根。(2)设方程两根为,,则由题可得,∴或∴∵是整数,∴【点睛】此题考查了根的判别式,以及根与系数的关系,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.23、,【解析】

原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a=﹣1代入计算即可求出值.【详解】原式,当a=﹣1时,原式=.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.24、(1)20,6;(2)估计年级每个学生的平均睡眠时间约6.3小时【解析】分析:(1)由B的人数和所占百分数求出共抽取的人数;再求出E和A的人数,由中位数的定义求出中位数,再将条形统计图补充完整即可;(2)求出所抽取的20名同学的平均睡眠时间,即可得出结果.详解:(1)共抽取的同学人数=6÷3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论