湖北省部分地区2024年八年级下册数学期末复习检测试题含解析_第1页
湖北省部分地区2024年八年级下册数学期末复习检测试题含解析_第2页
湖北省部分地区2024年八年级下册数学期末复习检测试题含解析_第3页
湖北省部分地区2024年八年级下册数学期末复习检测试题含解析_第4页
湖北省部分地区2024年八年级下册数学期末复习检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省部分地区2024年八年级下册数学期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若关于x的一元二次方程有实数根,则整数a的最大值是()A.4 B.5 C.6 D.72.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为()A.2 B.C. D.3.如图,在▱ABCD中,已知,,AE平分交BC于点E,则CE长是A.8cm B.5cm C.9cm D.4cm4.下列式子中,属于最简二次根式的是()A. B. C. D.5.一副三角板按图1所示的位置摆放,将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=8cm,则两个三角形重叠(阴影)部分的面积为()A.16+16cm2B.16+cm2C.16+cm2D.48cm26.已知△ABC,AB=5,BC=12,AC=13,点P是AC上一个动点,则线段BP长的最小值是()A. B.5 C. D.127.下列事件中必然事件有()①当x是非负实数时,x≥0;②打开数学课本时刚好翻到第12页;③13个人中至少有2人的生日是同一个月;④在一个只装有白球和绿球的袋中摸球,摸出黑球.A.1个 B.2个 C.3个 D.4个8.一组数据从小到大排列为1,2,4,x,6,1.这组数据的中位数是5,那么这组数据的众数为(

)A.4

B.5

C.5.5

D.69.七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的()A.平均数 B.中位数 C.极差 D.众数10.若一次函数y=m-1x-3的图象经过第二、三、四象限,则A.m>0 B.m<0 C.m>1 D.m<111.将直线y=x+1向右平移4个单位长度后得到直线y=kx+b,则k,b对应的值是()A.,1 B.-,1 C.-,-1 D.,-112.关于x的方程3x-2x+1=2+mA.﹣5B.﹣8C.﹣2D.5二、填空题(每题4分,共24分)13.已知直角三角形中,分别以为边作三个正方形,其面积分别为,则__________(填“”,“”或“”)14.在▱ABCD中,如果∠A+∠C=140°,那么∠B=度.15.过边形的一个顶点共有2条对角线,则该边形的内角和是__度.16.如图所示,△ABC为等边三角形,D为AB的中点,高AH=10cm,P为AH上一动点,则PD+PB的最小值为_______cm.17.先化简:,再对a选一个你喜欢的值代入,求代数式的值.18.在平面直角坐标系中,已知点A(﹣,0),B(,0),点C在x轴上,且AC+BC=6,写出满足条件的所有点C的坐标_____.三、解答题(共78分)19.(8分)在坐标系下画出函数的图象,(1)正比例函数的图象与图象交于A,B两点,A在B的左侧,画出的图象并求A,B两点坐标(2)根据图象直接写出时自变量x的取值范围(3)与x轴交点为C,求的面积20.(8分)如图在Rt△ABC中,∠ACB=90°,D是边AB的中点,BE⊥CD,垂足为点E.已知AC=15,cosA=.(1)求线段CD的长;(2)求sin∠DBE的值.21.(8分)(1)化简:;(2)先化简,再求值:,选一个你喜欢的数求值.22.(10分)如图,直线的解析式为,且与轴交于点D,直线经过点、,直线、交于点C.(1)求直线的解析表达式;(2)求的面积;(3)在直线上存在异于点C的另一点P,使得与的面积相等,请求出点P的坐标.23.(10分)如图,在平面直角坐标系中,位于第二象限的点在反比例函数的图像上,点与点关于原点对称,直线经过点,且与反比例函数的图像交于点.(1)当点的横坐标是-2,点坐标是时,分别求出的函数表达式;(2)若点的横坐标是点的横坐标的4倍,且的面积是16,求的值.24.(10分)如图1,在平面直角坐标系中,直线AB与x轴、y轴相交于、两点,动点C在线段OA上(不与O、A重合),将线段CB绕着点C顺时针旋转得到CD,当点D恰好落在直线AB上时,过点D作轴于点E.(1)求证,;(2)如图2,将沿x轴正方向平移得,当直线经过点D时,求点D的坐标及平移的距离;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标,若不存在,请说明理由.25.(12分)计算:×2-÷;26.已知关于x的函数y=(m+3)x|m+2|是正比例函数,求m的值.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据一元二次方程的定义和判别式的意义得到a-6≠0且△=(-2)2-4×(a-6)×3≥0,再求出两不等式的公共部分得到a≤且a≠6,然后找出此范围内的最大整数即可.【详解】根据题意得a-6≠0且△=(-2)2-4×(a-6)×3≥0,解得a≤且a≠6,所以整数a的最大值为5.故选B.【点睛】本题考查一元二次方程的定义和跟的判别式,一元二次方程的二次项系数不能为0;当一元二次方程有实数根时,△≥0.2、D【解析】

将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.【详解】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:则阴影面积===故选:D【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.3、B【解析】

直接利用平行四边形的性质得出,,进而结合角平分线的定义得出,进而得出,求出EC的长即可.【详解】解:四边形ABCD是平行四边形,,,平分交BC于点E,,,,,,.故选B.【点睛】此题主要考查了平行四边形的性质以及角平分线的定义,正确得出是解题关键.4、D【解析】分析:检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.详解:A.被开方数含能开得尽方的因数或因式,故不符合题意;B.被开方数含分母,故不符合题意;C.被开方数含分母,故不符合题意;D.被开方数不含分母;被开方数不含能开得尽方的因数或因式,故符合题意;故选D.点睛:此题考查了最简二次根式:被开方数不含分母;被开方数不含能开得尽方的因数或因式,满足这两个条件的二次根式才是最简二次根式.5、B【解析】

过G点作GH⊥AC于H,则∠GAC=60°,∠GCA=45°,GC=8cm,先在Rt△GCH中根据等腰直角三角形三边的关系得到GH与CH的值,然后在Rt△AGH中根据含30°的直角三角形三边的关系求得AH,最后利用三角形的面积公式进行计算即可.【详解】解:过G点作GH⊥AC于H,如图,

∠GAC=60°,∠GCA=45°,GC=8cm,

在Rt△GCH中,GH=CH=GC=4cm,

在Rt△AGH中,AH=GH=cm,

∴AC=AH+CH=+4(cm).

∴两个三角形重叠(阴影)部分的面积=AC•GH=×(+4)×4=16+cm2

故选:B.【点睛】本题考查了解直角三角形:求直角三角形中未知的边和角的过程叫解直角三角形.也考查了含30°的直角三角形和等腰直角三角形三边的关系以及旋转的性质.6、A【解析】解:∵AB=5,BC=12,AC=13,∴AB2+BC2=169=AC2,∴△ABC是直角三角形,当BP⊥AC时,BP最小,∴线段BP长的最小值是:13BP=5×12,解得:BP=.故选A.点睛:本题主要考查勾股定理的逆定理以及直角三角形面积求法,关键是熟练运用勾股定理的逆定理进行分析.7、B【解析】

根据必然事件、不可能事件、随机事件的概念判断即可.【详解】①当x是非负实数时,x≥0②打开数学课本时刚好翻到第12页,是随机事件;③13个人中至少有2人的生日是同一个月,是必然事件;④在一个只装有白球和绿球的袋中摸球,摸出黑球,是不可能事件.必然事件有①③共2个.故选B.【点睛】本题考查了必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件指在一定条件下一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、D【解析】分析:先根据中位数的定义可求得x,再根据众数的定义就可以求解.详解:根据题意得,(4+x)÷2=5,得x=2,则这组数据的众数为2.故选D.点睛:本题主要考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是一组数据中出现次数最多的数,难度适中.9、B【解析】

根据平均数、中位数、极差及众数的意义分别判断后即可确定正确的选项.【详解】去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数,一定不会影响到中位数,故选B.【点睛】此题考查统计量的选择,解题关键在于掌握各性质定义.10、D【解析】

根据一次函数的性质即可求出m的取值范围.【详解】∵一次函数的图象经过第二、三、四象限,∴m-1<0∴m<1.故选:D【点睛】本题考查一次函数,解题的关键是熟练运用一次函数的性质,本题属于基础题型.11、D【解析】分析:由已知条件易得,直线过点(0,1),结合直线是由直线向右平移4个单位长度得到的可知直线必过点(4,1),把和点(4,1)代入中解出b的值即可.详解:∵在直线中,当时,,∴直线过点(0,1),又∵直线是由直线向右平移4个单位长度得到的,∴,且直线过点(4,1),∴,解得:,∴.故选D.点睛:“由直线过点(0,1)结合已知条件得到,直线必过点(4,1)”是解答本题的关键.12、A【解析】解:去分母得:3x﹣2=2x+2+m①.由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程①得:﹣1=﹣2+2+m,解得:m=﹣1.故选A.二、填空题(每题4分,共24分)13、【解析】

由勾股定理得出AC2+BC2=AB2,得出S1+S2=S3,可得出结果.【详解】解:∵∠ACB=90°,

∴AC2+BC2=AB2,

∴S1+S2=S3,故答案为:=.【点睛】本题考查了勾股定理、正方形面积的计算;熟练掌握勾股定理,由勾股定理得出正方形的面积关系是解决问题的关键.14、1.【解析】根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.解:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=1°.故答案为1.15、1【解析】

n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出(n-3)条;多边形内角和定理:(n-2)•180(n≥3)且n为整数).【详解】解:过n边形的一个顶点共有2条对角线,则n=2+3=5,该n边形的内角和是(5-2)×180°=1°,故答案为:1.【点睛】本题考查了多边形内角和,熟记多边形内角和定理:(n-2)•180(n≥3)且n为整数)是解题的关键.16、10【解析】

连接PC,根据等边三角形三线合一的性质,可得PC=BP,PD+PB要取最小值,应使D、P、C三点一线.【详解】连接PC,∵△ABC为等边三角形,D为AB的中点,∴PD+PB的最小值为:PD+PB=PC+PD=CD=AH=10cm.故答案为:10【点睛】考查轴对称-最短路线问题,等边三角形的性质,找出点P的位置是解题的关键.17、;3【解析】

原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将a=3代入计算即可求出值.【详解】原式.∵且∴当a=3时,原式=【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18、(3,0)或(﹣3,0)【解析】试题解析:设点C到原点O的距离为a,∵AC+BC=6,∴a-+a+=6,解得a=3,∴点C的坐标为(3,0)或(-3,0).三、解答题(共78分)19、(1)图象详见解析,A(,),B(8,4);(2)x≤或x>8;(3).【解析】

(1)用描点法画出和的图象,再解方程组求得点A、B的坐标即可;(2)观察图象,结合点A、B的坐标即可求解;(3)先求得点C的坐标,再利用S△ABC=S△OBC﹣S△OAC即可求得△ABC的面积.【详解】(1)画出函数y1=|x﹣4|的图象如图:∵y=|x﹣4|∴,解得,∴A(,),解得,∴B(8,4);(2)y2≤y1时自变量x的取值范围是:x≤或x≥8;(3)令y=0则0=|x﹣4|,解得x=4,∴C(0,4),∴S△ABC=S△OBC﹣S△OAC=×4×4﹣=.【点睛】本题考查了函数图象的画法及函数的交点坐标问题,正确求得两个函数的交点坐标是解决问题的关键.20、(1)CD=;(2).【解析】

(1)根据直角三角形斜边上的中线等于斜边的一半,求出AB的长,即可求出CD的长;(2)由于D为AB上的中点,求出AD=BD=CD=,设DE=x,EB=y,利用勾股定理即可求出x的值,据此解答即可.【详解】解:(1)∵在Rt△ABC中,AC=15,cosA=,∴AB=25.∵△ACB为直角三角形,D是边AB的中点,∴CD=.(2)在Rt△ABC中,.又AD=BD=CD=,设DE=x,EB=y,则在Rt△BDE中,①,在Rt△BCE中,②,联立①②,解得x=.∴.21、(1);(2)选时,3.【解析】

(1)分别利用完全平方公式和平方差公式进行化简,再约分即可(2)首先将括号里面通分,再将分子与分母分解因式进而化简得出答案【详解】解:(1)原式(2)原式,∵∴可选时,原式.(答案不唯一)【点睛】此题考查分式的化简求值,掌握运算法则是解题关键22、(1);(2);(3)P(6,3).【解析】试题分析:(1)利用待定系数法求直线的解析表达式;(2)由方程组得到C(2,﹣3),再利用x轴上点的坐标特征确定D点坐标,然后根据三角形面积公式求解;(3)由于△ADP与△ADC的面积相等,根据三角形面积公式得到点D与点C到AD的距离相等,则D点的纵坐标为3,对于函数,计算出函数值为3所对应的自变量的值即可得到D点坐标.试题解析:(1)设直线的解析表达式为,把A(4,0)、B(3,)代入得:,解得:,所以直线的解析表达式为;(2)解方程组:,得:,则C(2,﹣3);当y=0时,,解得x=1,则D(1,0),所以△ADC的面积=×(4﹣1)×3=;(3)因为点D与点C到AD的距离相等,所以D点的纵坐标为3,当y=3时,,解得x=6,所以D点坐标为(6,3).考点:两条直线相交或平行问题.23、(1),;(2).【解析】

(1)先将点C坐标代入,利用待定系数法可求得y1的解析式,继而求得点A的坐标,点B坐标,根据B、C坐标利用待定系数法即可求得y2的解析式;(2)分别过点作轴于点,轴于点,连接,由三角形中线的性质可得,再根据反比例函数的比例系数的几何意义可得,从而可得,设点的横坐标为,则点坐标表示为、,继而根据梯形的面积公式列式进行计算即可.【详解】(1)由已知,点在的图象上,∴,∴,∵点的横坐标为,∴点为,∵点与点关于原点对称,∴为,把,代入得,解得:,∴;(2)分别过点作轴于点,轴于点,连接,∵为中点,∴∵点在双曲线上,∴∴,设点的横坐标为,则点坐标表示为、,∴,解得.【点睛】本题考查了反比例函数与一次函数综合,涉及了待定系数法,反比例函数k的几何意义,熟练掌握和灵活运用相关知识是解题的关键.24、(1),见解析;(2)D(3,1),平移的距离是个单位,见解析;(3)存在满足条件的点Q,其坐标为或或,见解析.【解析】

(1)根据AAS或ASA即可证明;

(2)首先求直线AB的解析式,再求出出点D的坐标,再求出直线B′

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论