版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精第二节函数的基本性质——奇偶性、单调性、周期性题型15函数的奇偶性1.(2013浙江理4)已知函数,则“是函数"是的()A.充分不必要条件B。必要不充分条件C。充分必要条件D。既不充分也不必要条件2.(2013山东理3)已知函数为奇函数,且当时,,则()。A.B。C.D。3.(2013广东理2)定义域为的四个函数,,,中,奇函数的个数是().A.B.C.D.4。(2014新课标1理3)设函数,的定义域为,且是奇函数,是偶函数,则下列结论中正确的是().A.是偶函数B。是奇函数C.是奇函数D。是奇函数5。(2015安徽理2)下列函数中,既是偶函数又存在零点的是()。A。B。C.D.5。解析对于选项A,是偶函数,且由得,,故A正确;对于选项B,是奇函数,故B错误;对于选项C,的定义域为,故不具备奇偶性,故C错误;对于选项D,是偶函数,但在实数范围内无解,即不存在零点,故D错误.故选A.6。(2015福建理2)下列函数为奇函数的是().A.B.C.D.6。解析函数是非奇非偶函数;和是偶函数;是奇函数.故选D.7.(2015广东理3)下列函数中,既不是奇函数,也不是偶函数的是()。A.B.C.D.7.解析令,则,,即,,所以既不是奇函数也不是偶函数,而A,B,C依次是偶函数、奇函数、偶函数.故选D.8。(2015全国I理13)若函数为偶函数,则。8。解析由题意可知函数是奇函数,所以,即,解得.9。(2016全国丙理15)已知为偶函数,当时,,则曲线在点处的切线方程是______________.9.解析解法一:先求函数在上的解析式,再求切线方程.设,则,又,所以,,所以在点处的切线方程为,即.解法二:由函数性质来求切线方程.因为为偶函数,所以若在点处的切线方程为,则在点处的切线方程为。因此,先求出在点处的切线方程。又,得,所以在点处的切线方程为,所以在点处的切线方程为,即。题型16函数的单调性1.(2014天津理4)函数的单调递增区间是().A.B。C.D.2。(2014北京理2)下列函数中,在区间上为增函数的是()。A。B.C.D.3.(2014陕西理7)下列函数中,满足“”的单调递增函数是()。A。B。C。 D.4.(2014大纲理22)(本小题满分12分)函数.(1)讨论的单调性;(2)设,求证:。5。(2015湖南理5)设函数,则是()。A.奇函数,且在上是增函数B.奇函数,且在上是减函数C.偶函数,且在上是增函数D。偶函数,且在上是减函数5。解析由已知的定义域为,关于原点对称.又因为,所以为奇函数。,当时,,即在上为增函数。故选A。6.(2015四川理9)如果函数在区间上单调递减,那么的最大值为()。A.B。C.D.6.解析当时,抛物线的对称轴为;当时,,即.因为,所以。由且,得;当时,抛物线开口向下,根据题意可得,,即。因为,所以.由且,得,故应舍去。要使得取得最大值,应有。所以.所以最大值为.故选B.A。B。C。D.7。(2015北京理5)已知,且,则().A.B。C。 D.7。C解析选项A错误:因为;选项B错误:三角函数在上不是单调的,所以不一定有。举反例如,当时,;选项C正确:由指数函数是减函数,可得;选项D错误:举一个反例如,,。满足,但。故选C.8。(2016上海理22)已知,函数。(1)当时,解不等式;(2)若关于的方程的解集中恰有一个元素,求的取值范围;(3)设,若对任意,函数在区间上的最大值和最小值的差不超过,求的取值范围。8.解析(1)由题意,即,整理得,即,故不等式的解为;(2)依题意,所以, ①整理得,即,②当时,方程②的解为,代入①式,成立;当时,方程②的解为,代入①式,成立;当且时,方程②的解为或,若为方程①的解,则,即,若为方程①的解,则,即.要使得方程①有且仅有一个解,则或,即.综上,若原方程的解集有且只有一个元素,则的取值范围为或或。(3)当时,,,所以在上单调递减。因此在上单调递减.故只需满足,即,所以,即,设,则,。当时,;当时,,又函数在递减,所以。故。故的取值范围为。评注第(3)问还可从二次函数的角度考查,由整理得对任意成立。因为,函数的对称轴,故函数在区间上单调递增.所以当时,有最小值,由,得.故的取值范围为.9。(2017山东理15)若函数(是自然对数的底数)在的定义域上单调递增,则称函数具有性质。下列函数中所有具有性质的函数的序号为。 ① ② ③ ④9。解析=1\*GB3①在上单调递增,故具有性质;=2\*GB3②在上单调递减,故不具有性质;=3\*GB3③,令,则,所以当时,;当时,,所以在上单调递减,在上单调递增,故不具有性质;=4\*GB3④。令,则,所以在上单调递增,故具有性质.综上所述,具有性质的函数的序号为①④.题型17函数的奇偶性和单调性的综合1.(2014新课标2理15)已知偶函数在单调递减,。若,则的取值范围是。2。(2014北京理18)(本小题13分)已知函数,求证:;若在上恒成立,求的最大值与的最小值。3。(2014广东理21)设函数,其中.(1)求函数的定义域;(用区间表示);(2)讨论在区间上的单调性。4.(2014福建理7)已知函数则下列结论正确的是()。A.是偶函数B.是增函数C。是周期函数D。的值域为5.(2014湖北理10)已知函数是定义在上的奇函数,当时,.若,则实数的取值范围为()。A。B.C.D。6。(2014湖南理3)已知,分别是定义在上的偶函数和奇函数,且,则()。A.B.C。D.7。(2014湖南理10)已知函数与图像上存在关于轴对称的点,则的取值范围是().A。B.C。D。8。(17江苏11)已知函数,其中是自然对数的底数.若,则实数的取值范围是.8.解析易知的定义域为.因为,所以是奇函数.又,且不恒成立,所以在上单调递增.因为,所以,于是,即,解得.故填.9。(2017天津理6)已知奇函数在R上是增函数,。若,,,则a,b,c的大小关系为()。A. B。 C. D。9。解析因为奇函数在上增函数,所以当时,,从而是上的偶函数,且在上是增函数。,,又,则,所以,于是,即。故选C.10。(2017北京理5)已知函数,则().A.是奇函数,且在上是增函数 B.是偶函数,且在上是增函数C.是奇函数,且在上是减函数 D.是偶函数,且在上是减函数10.解析由题知,,所以为奇函数.又因为是增函数,也是增函数,所以在上是增函数.故选A。11。(2017全国1理5)函数在单调递减,且为奇函数.若,则满足的的取值范围是()。A. B. C. D.11。解析因为为奇函数,所以,于是等价于,又在单调递减,所以,所以.故选D.题型18函数的周期性1.(2014安徽理6)设函数满足。当时,,则()。A。B.C。D。2。(2014四川理12)设是定义在上的周期为的函数,当时,,则。3.(2016浙江理5)设函数,则的最小正周期().A。与有关,且与有关B.与有关,但与无关C。与无关,且与无关D.与无关,但与有关3。B解析由,的最小正周期为,的最小正周期为.当时,,此时的最小正周期是;当时,此时的最小正周期为,所以影响的最小正周期,而为常数项不影响的最小正周期.故选B。4。(2016江苏11)设是定义在上且周期为的函数,在区间上,其中,若,则的值是。4.解析由题意得,。由,可得,则.5.(2017江苏14)设是定义在且周期为的函数,在区间上,.其中集合,则方程的解的个数是.5。解析由题意,所以只需要研究内的根的情况.在此范围内,且时,设,且互质,若,则由,可设,且互质。从而,则,此时左边为整数,右边为非整数,矛盾,因此,于是不可能与内的部分对应相等,所以只需要考虑与每个周期内部分的交点。如图所示,通过函数的草图分析,图中交点除外,其它交点均为的部分.且当时,,所以在附近只有一个交点,因而方程解的个数为个.故填.题型18函数性质的综合1.(2013四川理10)设函数(,为自然对数的底数).若曲线上存在使得,则的取值范围是()A.B.C。D。2。(2014四川理15)以表示值域为的函数组成的集合,表示具有如下性质的函数组成的集合:对于函数,存在一个正数,使得函数的值域包含于区间。例如,当,时,,.现有如下命题:①设函数的定义域为,则“"的充要条件是“,,”;②函数的充要条件是有最大值和最小值;③若函数,的定义域相同,且,,则;④若函数有最大值,则。其中的真命题有。(写出所有真命题的序号)3。(2014湖北理6)若函数满足,则称为区间上的一组正交函数,给出三组函数:①;②;③,其中为区间的正交函数的组数是().A。B.C.D。4.(2014四川理9)已知,。现有下列命题:①;②;③。其中的所有正确命题的序号是()。A.①②③B.②③C.①③D.①②5.(2014山东理15)已知函数,对函数,定义关于的“对称函数”为函数,满足:对任意,两个点关于点对称,若是关于的“对称函数",且恒成立,则实数的取值范围是.6.(2015湖北理6)已知符号函数是上的增函数,,则().A. B.C. D.6。解析是上的增函数,当时,若;若,则,从而;若,则,从而。故选B。7。(2016山东理9)已知函数的定义域为.当时,;当时,;当时,,则().A.B.C.D。7。D解析由知,当时,的周期为,所以.又当时,,所以.于是。故选D。8。(2016全国乙理12)已知函数,为的零点,为图像的对称轴,且在上单调,则的最大值为()。A。B.C。D.8.B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京市农作物种子买卖合同示范文本
- 博士后研究人员进站合同
- 工程用工劳务合同
- 山东省青岛市2024年七年级上学期期中模考训练试卷【附答案】
- 浙江省重点中学四校联考2023-2024学年高一下学期5月月考历史试题
- 湖南省永州市2023-2024学年高一下学期7月期末质量监测数学试卷
- 工程项目划分
- 云南省昆明市师范大学附属中学2023-2024学年高三下学期月考(七)语文试题
- 工程审计对量沟通的八大技巧
- 2024-2025学年课时作业历史选择性必修1课时作业(一) 中国古代政治制度的形成与发展
- 统编版五年级上册语文第六单元集体备课 课件
- 房地产开发公司安全生产管理制度范文
- 艺术培训中心机构创办经营项目招商引资方案
- 煤制乙二醇项目评估报告
- (完整文本版)新世纪研究生公共英语教材-听说(上)参考答案(修订版)
- 《宣州谢朓楼饯别校书叔云》课件
- “德能勤绩廉”考核测评表
- 成人住院患者营养不良评定-根据GLIM标准制定
- 0-10加减法口诀表(含0)
- 后进生转化记录表4篇-后进生转化
- 核心素养导向的初中化学单元教学设计:基于大概念
评论
0/150
提交评论