湖南省广益实验中学2024年八年级下册数学期末综合测试试题含解析_第1页
湖南省广益实验中学2024年八年级下册数学期末综合测试试题含解析_第2页
湖南省广益实验中学2024年八年级下册数学期末综合测试试题含解析_第3页
湖南省广益实验中学2024年八年级下册数学期末综合测试试题含解析_第4页
湖南省广益实验中学2024年八年级下册数学期末综合测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省广益实验中学2024年八年级下册数学期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.某班体育委员对7位同学定点投篮进行数据统计,每人投10个,投进篮筐的个数依次为:5,6,5,3,6,8,1.则这组数据的平均数和中位数分别是()A.6,6 B.6,8 C.7,6 D.7,82.下列命题中,错误的是()A.过n边形一个顶点的所有对角线,将这个多边形分成(n-2)个三角形B.斜边和一条直角边分别对应相等的两个直角三角形全等C.三角形的中线将三角形分成面积相等的两部分D.一组对边平行另一组对边相等的四边形是平行四边形3.如图,已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(10,0),点B(0,6),点P为BC边上的动点,将△OBP沿OP折叠得到△OPD,连接CD、AD.则下列结论中:①当∠BOP=45°时,四边形OBPD为正方形;②当∠BOP=30°时,△OAD的面积为15;③当P在运动过程中,CD的最小值为1﹣6;④当OD⊥AD时,BP=1.其中结论正确的有()A.1个 B.1个 C.3个 D.4个4.下列命题中是假命题的是()A.一组对边平行且相等的四边形是平行四边形B.一组对边相等且有一个角是直角的四边形是矩形C.一组邻边相等的平行四边形是菱形D.一组邻边相等的矩形是正方形5.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E且AB=AE,延长AB与DE的延长线相交于点F,连接AC、CF.下列结论:①△ABC≌△EAD;②△ABE是等边三角形;③BF=AD;④S△BEF=S△ABC;⑤S△CEF=S△ABE;其中正确的有()A.2个 B.3个 C.4个 D.5个6.要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象()A.向左平移5个单位B.向右平移5个单位C.向上平移5个单位D.向下平移5个单位7.罗老师从家里出发,到一个公共阅报栏看了一会儿报后,然后回家.右图描述了罗老师离家的距离(米与时间(分之间的函数关系,根据图象,下列说法错误的是A.罗老师离家的最远距离是400米B.罗老师看报的时间为10分钟C.罗老师回家的速度是40米分D.罗老师共走了600米8.点A(1,-2)在正比例函数的图象上,则k的值是().A.1 B.-2 C. D.9.△ABC的三边为a、b、c,由下列条件不能判断它是直角三角形的是()A.∠A:∠B:∠C=3∶4∶5 B.∠A=∠B+∠CC.a2=(b+c)(b-c) D.a:b:c=1∶2∶10.在下列条件中能判定四边形ABCD是平行四边形的是()A.AB=BC,AD=DC B.AB//CD,AD=BCC.AB//CD,∠B=∠D D.∠A=∠B,∠C=∠D二、填空题(每小题3分,共24分)11.菱形的周长为12,它的一个内角为60°,则菱形的较长的对角线长为______.12.计算的结果为_____.13.已知反比例函数的图象经过点,则b的值为______.14.如图,平行四边形中,为的中点,连接,若平行四边形的面积为,则的面积为____.15.若一个正多边形的一个内角等于135°,那么这个多边形是正_____边形.16.如图,正方形ABCD中,AB=6,E是CD的中点,将△ADE沿AE翻折至△AFE,连接CF,则CF的长度是_____.17.如图,将一宽为1dm的矩形纸条沿BC折叠,若,则折叠后重叠部分的面积为________dm2.18.如图,在中,,,斜边在轴上,点在轴正半轴上,点的坐标为.则直角边所在直线的解析式为__________.三、解答题(共66分)19.(10分)如图,直线m的表达式为y=﹣3x+3,且与x轴交于点B,直线n经过点A(4,0),且与直线m交于点C(t,﹣3)(1)求直线n的表达式.(2)求△ABC的面积.(3)在直线n上存在异于点C的另一点P,使△ABP与△ABC的面积相等,请直接写出点P的坐标是.20.(6分)数形结合是一种重要的数学思想,我们不但可以用数来解决图形问题,同样也可以用借助图形来解决数量问题,往往能出奇制胜,数轴和勾股定理是数形结合的典范.数轴上的两点A和B所表示的数分别是和,则A,B两点之间的距离;坐标平面内两点,,它们之间的距离.如点,,则.表示点与点之间的距离,表示点与点和的距离之和.(1)已知点,,________;(2)表示点和点之间的距离;(3)请借助图形,求的最小值.21.(6分)计算:22.(8分)某学校需要置换一批推拉式黑板,经了解,现有甲、乙两厂家报价均为100元/米1,且提供的售后服务完全相同,为了促销,甲厂家表示,每平方米都按七折计费;乙厂家表示,如果黑板总面积不超过10米1,每平方米都按九折计费,超过10米1,那么超出部分每平方米按六折计费.假设学校需要置换的黑板总面积为x米1.(1)请分别写出甲、乙两厂家收取的总费用y(元)与x(米1)之间的函数关系式;(1)请你结合函数图象的知识帮助学校在甲、乙两厂家中,选择一家收取总费用较少的.23.(8分)先化简分式,后在,0,1,2中选择一个合适的值代入求值.24.(8分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其它因素).(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x的范围.25.(10分)如图,在中,,平分,垂直平分于点,若,求的长.26.(10分)已知:如图,E,F为□ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

根据中位数和平均数的定义求解即可.【详解】解;这组数据的平均数=(5+6+5+3+6+8+1)÷7=6,

把5,6,5,3,6,8,1从小到大排列为:3,5,5,6,6,8,1,

最中间的数是6,

则中位数是6,

故选A.【点睛】本题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数2、D【解析】

根据多边形的性质、全等三角形的判定、三角形中线及平行四边形的判定即可依次判断.【详解】A.过n边形一个顶点的所有对角线,将这个多边形分成(n-2)个三角形,正确;B.斜边和一条直角边分别对应相等的两个直角三角形全等,正确;C.三角形的中线将三角形分成面积相等的两部分,正确;D.一组对边平行且相等的四边形是平行四边形,故错误;故选D.【点睛】此题主要考查几何图形的判定与性质,解题的关键是熟知多边形的性质、全等三角形的判定、三角形中线及平行四边形的判定.3、D【解析】

①由矩形的性质得到,根据折叠的性质得到,,,推出四边形是矩形,根据正方形的判定定理即可得到四边形为正方形;故①正确;②过作于,得到,,根据直角三角形的性质得到,根据三角形的面积公式得到的面积为,故②正确;③连接,于是得到,即当时,取最小值,根据勾股定理得到的最小值为;故③正确;④根据已知条件推出,,三点共线,根据平行线的性质得到,等量代换得到,求得,根据勾股定理得到,故④正确.【详解】解:①四边形是矩形,,将沿折叠得到,,,,,,,,四边形是矩形,,四边形为正方形;故①正确;②过作于,点,点,,,,,,,的面积为,故②正确;③连接,则,即当时,取最小值,,,,,即的最小值为;故③正确;④,,,,,,三点共线,,,,,,,,,故④正确;故选:.【点睛】本题考查了正方形的判定和性质,矩形的判定和性质,折叠的性质,勾股定理,三角形的面积的计算,正确的识别图形是解题的关键.4、B【解析】

根据平行四边形和特殊平行四边形的判定法则即可得出答案.【详解】解:A、一组对边平行且相等的四边形是平行四边形,正确;B、一组对边相等且相等,且有一个角是直角的四边形是矩形,错误;C、一组邻边相等的平行四边形是菱形,正确;D、一组邻边相等的矩形是正方形,正确.故选B.【点睛】本题主要考查的是平行四边形和特殊平行四边形的判定定理,属于基础题型.熟记判定定理是解决这个问题的关键.5、B【解析】

根据平行四边形的性质可得AD//BC,AD=BC,根据平行线的性质可得∠BEA=∠EAD,根据等腰三角形的性质可得∠ABE=∠BEA,即可证明∠EAD=∠ABE,利用SAS可证明△ABC≌△EAD;可得①正确;由角平分线的定义可得∠BAE=∠EAD,即可证明∠ABE=∠BEA=∠BAE,可得AB=BE=AE,得出②正确;由S△AEC=S△DEC,S△ABE=S△CEF得出⑤正确;题中③和④不正确.综上即可得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠BEA=∠EAD,∵AB=AE,∴∠ABE=∠BEA,∴∠EAD=∠ABE,在△ABC和△EAD中,,∴△ABC≌△EAD(SAS);故①正确;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠ABE=∠BEA=∠BAE,∴∠BAE=∠BEA,∴AB=BE=AE,∴△ABE是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;⑤正确.若AD=BF,则BF=BC,题中未限定这一条件,∴③不一定正确;如图,过点E作EH⊥AB于H,过点A作AG⊥BC于G,∵△ABE是等边三角形,∴AG=EH,若S△BEF=S△ABC,则BF=BC,题中未限定这一条件,∴④不一定正确;综上所述:正确的有①②⑤.故选:B.【点睛】本题考查平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质,熟练掌握等底、等高的三角形面积相等的性质是解题关键.6、C【解析】

平移后相当于x不变y增加了5个单位,由此可得出答案.【详解】解:由题意得x值不变y增加5个单位

应沿y轴向上平移5个单位.

故选C.【点睛】本题考查一次函数图象的几何变换,注意平移k值不变的性质.7、D【解析】

根据函数图象中的数据可以判断各个选项中的说法是否正确.【详解】解:由图象可得,罗老师离家的最远距离是400米,故选项正确,罗老师看报的时间为分钟,故选项正确,罗老师回家的速度是米分,故选项正确,罗老师共走了米,故选项错误,故选:.【点睛】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.8、B【解析】

直接把点(1,-2)代入正比例函数y=kx(k≠0),求出k的值即可.【详解】∵正比例函数y=kx(k≠0)的图象经过点(1,-2),∴-2=k.故选B.【点睛】本题考查了一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.9、A【解析】分析:根据直角三角形的概念,角的特点和勾股定理的逆定理逐一判断即可.详解:根据直角三角形的两锐角互余,可知180°×=75°<90°,不是直角三角形,故正确;根据三角形的内角和定理,根据∠A+∠B+∠C=180°,且∠A=∠B+∠C,可得∠A=90°,是直角三角形,故不正确;根据平方差公式,化简原式为a2=b2-c2,即a2+c2=b2,根据勾股定理的逆定理,可知是直角三角形,故不正确;根据a、b、c的关系,可直接设a=x,b=2x,c=x,可知a2+c2=b2,可以构成直角三角形,故不正确.故选A.点睛:此题主要考查了直角三角形的判定,关键是根据三角形的两锐角互余,三角形的内角和定理和勾股定理逆定理进行判断即可.10、C【解析】

A、AB=BC,AD=DC,不能判定四边形ABCD是平行四边形,故此选项错误;B、AB∥CD,AD=BC不能判定四边形ABCD是平行四边形,故此选项错误;C、AB//CD,∠B=∠D能判定四边形ABCD是平行四边形,故此选项正确;D、∠A=∠B,∠C=∠D不能判定四边形ABCD是平行四边形,故此选项错误;故选C.二、填空题(每小题3分,共24分)11、3【解析】

根据菱形的对角线互相垂直平分可得AC⊥BD,BD=2OB,菱形的对角线平分一组对角线可得∠ABO=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得AO=AB,再利用勾股定理列式求出OB,即可得解.【详解】解:如图所示:∵菱形ABCD的周长为12,∴AB=3,AC⊥BD,BD=2OB,∵∠ABC=60°,∴∠ABO=∠ABC=30°,∴AO=AB=×3=,由勾股定理得,OB===,∴BD=2OB=3.故答案为:3.【点睛】本题考查了菱形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,熟记性质是解题的关键,作出图形更形象直观.12、x﹣1【解析】

同分母的分式相加,分母不变分子做加减法,然后再讲答案化简即可【详解】,故填x-1【点睛】本题考查分式的简单计算,熟练掌握运算法则是解题关键13、-1【解析】

将点的坐标代入反比例函数解析式即可解答.【详解】把点(-1,b)代入y=,得b==-1.故答案是:-1.【点睛】考查了反比例函数图象上点的坐标特征.函数图象上所有点的坐标均满足该函数解析式.14、6【解析】

如图,连接AC.首先证明△ABC≌△CDA,可得S△ABC=S△ADC=×24=12(cm2),由AE=DE,可得S△CDE=S△ADC=6;【详解】解:如图,连接.∵四边形是平行四边形,∴,,∵,∴,∴,∵,∴,故答案为6【点睛】本题考查平行四边形的性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15、八【解析】360°÷(180°-135°)=816、6【解析】

连接DF交AE于G,依据轴对称的性质以及三角形内角和定理,即可得到∠AGD=∠DFC=90°,再根据面积法即可得出DG=AD⋅DEAE=655,最后判定△ADG≌△DCF,即可得到CF【详解】解:如图,连接DF交AE于G,由折叠可得,DE=EF,又∵E是CD的中点,∴DE=CE=EF,∴∠EDF=∠EFD,∠ECF=∠EFC,又∵∠EDF+∠EFD+∠EFC+∠ECF=180°,∴∠EFD+∠EFC=90°,即∠DFC=90°,由折叠可得AE⊥DF,∴∠AGD=∠DFC=90°,又∵ED=3,AD=6,∴Rt△ADE中,AE=35又∵12∴DG=AD⋅DE∵∠DAG+∠ADG=∠CDF+∠ADG=90°,∴∠DAG=∠CDF,又∵AD=CD,∠AGD=∠DFC=90°,∴△ADG≌△DCF(AAS),∴CF=DG=65故答案为:65【点睛】本题主要考查了正方形的性质,折叠的性质以及全等三角形的判定与性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.17、1【解析】

作出AB边上的高,求出AC的长;根据翻折不变性及平行线的性质,求出AC=AB,再利用三角形的面积公式解答即可【详解】作CD⊥AB,∵CG∥AB,∴∠1=∠2,根据翻折不变性,∠1=∠BCA,故∠2=∠BCA.∴AB=AC.又∵∠CAB=30∘,∴在Rt△ADC中,AC=2CD=2dm,∴AB=2dm,S△ABC=AB×CD=1dm2.故答案为:1.【点睛】本题考查翻折变换,熟练掌握翻折不变性及平行线的性质是解题关键.18、y=x+1【解析】

根据题意可得△AOC与△COB相似,根据对应边成比例即可得到BO的长,利用待定系数法故可求解.【详解】∵A(2,0)∴AO=2,在Rt△AOC中,CO=,∴C(0,1)∵∴,又∴,又∴△AOC∽△COB∴,即∴BO=8∴B(-8,0)设直线BC的解析式为y=kx+b把B(-8,0),C(0,1)代入得解得∴边所在直线的解析式为y=x+1故答案为:y=x+1.【点睛】此题主要考查相似三角形的性质与判定及一次函数解析式的求解,解题的关键是熟知待定系数法的应用.三、解答题(共66分)19、(1)n的表达式为;(2)S△ABC的面积是4.5;(3)P点坐标为(6,3).【解析】

(1)把C点坐标代入直线m,可求得t,再由待定系数法可求得直线n的解析式;

(2)可先求得B点坐标,则可求得AB,再由C点坐标可求得△ABC的面积;

(3)由面积相等可知点P到x轴的距离和点C到y轴的距离相等,可求得P点纵坐标,代入直线n的解析式可求得P点坐标.【详解】(1)∵直线m过C点,

∴-3=-3t+3,解得t=2,

∴C(2,-3),

设直线n的解析式为y=kx+b,

把A、C两点坐标代入可得,解得,

∴直线n的解析式为y=1.5x-6;

(2)在y=-3x+3中,令y=0,可得0=-3x+3,解得x=1,

∴B(1,0),且A(4,0),

∴AB=4-1=3,且C点到x轴的距离h=3,

∴S△ABC=(3)由点P在直线n上,故可设P点坐标为(x,1.5x-6),

∵S△ABC=S△ABP,

∴P到x轴的距离=3,

∵C、P两点不重合,

∴P点的纵坐标为3,

∴1.5x-6=3,解得x=6,

∴P点坐标为(6,3).【点睛】本题主要考查一次函数的应用,掌握两直线的交点坐标满足每条直线的解析式是解题的关键.20、(1);(2),,;(3)最小值是.【解析】

(1)根据两点之间的距离公式即可得到答案;(2)根据表示点与点之间的距离,可以得到A、B两点的坐标;(3)根据两点之间的距离公式,再结合图形,通过化简可以得到答案;【详解】解:(1)根据两点之间的距离公式得:,故答案为:.(2)根据表示点与点之间的距离,∴表示点和点之间的距离,∴故答案为:b,-6,1.(3)解:如图1,表示的长,根据两点之间线段最短知如图2,∴的最小值是.【点睛】本题考查了坐标平面内两点之间的距离公式,以及平面内两点之间的最短距离,解题的关键是注意审题,会用数形结合的解题方法.21、1-【解析】

根据实数的性质进行化简即可求解.【详解】解:原式=+2--1-=1-【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.22、(1)甲厂家的总费用:y甲=140x;乙厂家的总费用:当0<x≤10时,y乙=180x,当x>10时,y乙=110x+1100;(1)详见解析.【解析】

(1)根据题目中的数量关系即可得到甲、乙两厂家收取的总费用y(元)与x(米1)之间的函数关系式;(1)分别画出甲、乙两厂家收取的总费用y(元)与x(米1)的函数图象,结合图象分析即可.【详解】解:(1)甲厂家的总费用:y甲=100×0.7x=140x;乙厂家的总费用:当0<x≤10时,y乙=100×0.9x=180x,当x>10时,y乙=100×0.9×10+100×0.6(x﹣10)=110x+1100;(1)甲、乙两厂家收取的总费用y(元)与x(米1)的函数图象如图所示:若y甲=y乙,140x=110x+1100,x=60,根据图象,当0<x<60时,选择甲厂家;当x=60时,选择甲、乙厂家都一样;当x>60时,选择乙厂家.【点睛】本题主要考查了一次函数在实际生活中的应用,涉及到的知识有运用待定系数法求函数的解析式,平面直角坐标系中交点坐标的求法,函数图象的画法等,从图表及图象中获取信息是解题的关键,属于中档题.23、,.【解析】

先对进行化简,再选择-1,0,1代入计算即可.【详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论