版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江苏省无锡市锡山区九年级上学期期中数学质量检测
模拟试卷
一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项
是正确的)
1.一元二次方程x2-16=0的解是()
A.xi=2,X2=-2B.xi=4,X2=-4
C.xi=8,X2=-8D.jq=16,%2=-16
2.已知关于x的方程N+2x+〃?=0有两个不相等的实数根,则加的取值范围是()
A.m—1B.m>\C.m<1D.
3.已知。。的半径为3,点P到圆心。的距离为4,则点尸与。。的位置关系是()
A.点尸在。。外B.点尸在。。上C.点尸在。。内D.无法确定
4.已知点P是线段N8的黄金分割点(AP>PB),45=4,那么/尸的长是()
A.2V5-2B.2-V5C.2A/5-1D.V5-2
5.已知圆锥的底面半径是4,母线长是5,则圆锥的侧面积是()
A.10兀B.15兀C.20KD.25兀
6.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,
求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()
A.560(1+x)2=315B.560(1-x)2=315
C.560(1-2x)2=315D.560(1-x2)=315
7.如图,点/、B、C在。。上,点。是延长线上一点,若NC8O=55。,则/ZOC的度数为
()
8.如图所示,给出下列条件:①NB=NACD;②N4DC=NACB;喏=攀④.其
中能够判定△ABCs的个数为()
A.1B.2C.3D.4
9.如图,48是半圆O的直径,点。在半圆。上,AB=2屈,AD=\0,。是弧8。上的一个
动点,连接AC,过D点作DHL4c于H,连接BH,在点C移动的过程中,BH的最小值是()
第9题图第10题图
10.如图,将正方形纸片Z8CD沿尸。折叠,使点C的对称点E落在边上,点。的对称点为
点凡E尸为交ZD于点G,连接CG交尸。于点H,连接CE.下列四个结论中:①APBEs/\QFG;
②&C£G=S"2s砌gc。。"③EC平分NBEG;④EG?-CH^G.GD,正确的是()
A.①②③B.①③④C.①②④D.②③④
二、填空题(本大题共8小题,每小题3分,共24分.)
11.如果在比例尺为1:的地图上,A,8两地的图上距离是3.4厘米,那么/、8两地的实际距
离是千米.
⑵若则中的值为------------
13.若关于x的一元二次方程一一加匠+3=0的一个根是-1,则另一个根是.
14.直角三角形的两直角边长分别为6和8,它的外接圆的半径是.
15.如图,点。、£分别在N8与/C上,DE//BC,且SMOE:S四边柩OBCE=1:8,DE=3,则8c
第15题图第17题图第18题图
16.若扇形半径为4,弧长为2兀,则该扇形的圆心角为
17.如图,ZUBC中,点。、E分别是48、8c的中点,连接/E、8交于点尸,当△ZFD的面
7
积为一时,△Z8C的面积为.
2
18.矩形N8CZ)中,AB=6,4D=12,连结8。,E,F分别在边8C,CD上,连结4E;4F分别
交BD于点、M,N,若/E4尸=45。,BE=3,则。N的长为.
三、解答题(本大题共10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)
19.(8分)解下列方程:
⑴N-2x7=0;(2)x2+6x-16=0
20.(8分)已知关于x的一元二次方程f一机x+m-l=0.
(1)若该方程有一个根是2,求该方程的另一个根;
(2)求证:该方程总有两个实数根.
21.(10分)如图,已知△N8C中,AB=AC,点、D、E分别在边8C、NC上,NADE=NB.
(1)求证:AABDsADCE;
(2)若/8=5,BC=6,BD=2,求EC的长.
22.(10分)如图,/历1C=9O。,点/在。。上,过点。作比1的平行线交ZC于点E,交过点
C的直线于点。,且
(1)求证:是。。的切线;
(2)若AB=2,8c=2旧,求CE的长.
23.(10分)“农产品”促销活动正在启动,某种商品的进价为每件30元,售价为每件40元,每
天可销售48件.为尽快减少库存,商场决定降价促销.经调查,若该商品每降价0.5元,每天
可多销售4件.
(1)若每件降价2元,则每天可销售件;
(2)若每天要想获得504元的利润且尽快减少库存,求每件应降价多少元?
24.(10分)如图,Z8是。。的弦,半径垂足为。,弦CE与Z8交于点F,连接ZE,
AC,BC.
(1)求证:NB4C=NE;
(2)若48=8,DC=2,CE=3"U,求CF的长.
25.(10分)如图,菱形N88中,ZS=60°,Z8=10,NC为对角线,尸是边8c延长线上一
点,连接4P.
(1)在线段NP上求作点使得/ZMC=120。(要求:尺规作图,保留痕迹,不写作法);
(2)在(1)的作图条件下,当4P=25时,求线段力”的长度.
B
26.(10分)如果关于x的一元二次方程a/+bx+c=0(存0)有两个实数根,其中一个实数根是
另一个实数根的2倍,那么称这样的方程是“倍根方程例如一元二次方程N-6x+8=0的两
个根是制=2,m=4,则方程炉-6升8=0是"倍根方程”.
Q1Q
(1)方程①N-x-2=0;@x2-2x+-=Q-,③6x2+x=0;@-x2+2x+-=0,这几个方
933
程中,是倍根方程的是(填序号即可);
(2)若关于x的方程(x-2)(x-m)=0是“倍根方程”,求代数式/+2加+2的值;
(3)若一元二次方程ox2+bx+c=0(Z>2-4ac>0)是倍根方程,请直接写出“,b,c的等量关系.
27.(10分)如图1,平行四边形A8CQ中,AB=8,BC=4,ZABC^60°.点P为射线8c上
一点,以3P为直径作。。交/8、0c于E、尸两点.设OO的半径为x.
(1)如图2,当。。与OP相切时,x=.
(2)如图3,当点尸与点C重合时,
①求线段CE长度:
②求阴影部分的面积;
(3)当。。与平行四边形月88边所在直线相切时,求x的值;
图1图2图3
28.(10分)已知四边形/BCD是菱形,ZABC=60°,AB=2.
(1)如图1,P是BD上一点,连接力尸并延长,交8c的延长线于点£,交CD于点F,若
CE=4,
①求CF的长;
②求尸尸的长;
(2)如图2,用是川□的中点,连接过点M作及交的延长线于点N,点0
在8c上,连接M0,分别过点8,N作直线A/0的垂线,垂足分别为C,H,若8G=1,求
G”的长;
(3)如图3,J为AB上一氤,L为BC上一点,BJ=BL,分别过点J,L作8C,的平行线,
两条直线交于点K,将四边形R/KL绕点5顺时针旋转,如图4,直线NJ交直线。K于点K,
图1图2图3图4
答案和解析
1-5BCAAC6-10BCCDB
712石
11.3412.-13.-13.-314.515.916.90°17.2118.-----
45
19.解:(1)x2-2x-1—0,(2)x2+6x-16=0,
(x-1)2=2,.2分(x+8)(x-2)=0,............2分
x-1=±V2»x+8=0,x-2=0,
幻=1+&,X2=l-企;.....4分X1=-8,X2=2,..............4分
20.解:(1)当x=2时,4一2加+加一1=0
771=3................2分
/.玉+工2=3
,另一个根是1.......4分
(2)A=(-/7?)2-4x1x(w-1)
=m2-4m4-4
=(/n-2)2>0,....7分
,该方程总有两个实数根;……8分
21.(1)证明:・:AB=AC,
・•・/B=/C,
*.*/ADC=/B+/BAD=/ADE+/CDE,
:./BAD=/CDE,
:•△ABDS^DCE:..............6分
(2)♦:dABDsADCE,
.AB_BD
^~DC~~EC
Q
:.EC=-..................10分
5
22.(1)证明:':BA//OD,
:.ZOEC^ZBAC=90°,
:.ZD+ZDCE-=90°,
,:ND=NBCA,
,NBCA+/DCE=ZBCD=90°,
J.BCVCD,
是圆。的切线;....5分
(2);4B=2,5C=2V3,ZBAC=90°,
:.AC=>JBC2-AB2=J(2同2-=2或,
由(1)可知NC48=NOCO=90。,
...EC=-AC=y[2........................10分
2
23.(1)64..................................................................................3分
(2)设每件应降价y元,
依题意,得(40-30-y)(48+嗫)=504,..........................................................7分
整理,得炉-4y+3=0,
解方程,得y=l,y=3,...........................................................................................9分
要尽快减少库存,所以取y=3.
答:每天要想获得504元的利润且尽快减少库存,每件应降价3元........10分
24.解:(1)证明:':OC1AB,
:.AD=BD,AC=BC,
;.NBAC=NE;................................4分
(2)解:':AB=S,
;"D=BD=4,
VZADC=90°AD=4,CO=2
:.AC=\/AD2+CD2=26,................6分
;NBAC=NE,
,:NACF=NECA,
・•・AACFsAECA,8分
.AC__CF_
'•荷一次
・2病_CF_
'*3710-京'
2V10
・・・CF=....................10分
3
25.(1)如图,作AABC的外接圆;
4分
・••点M即为所求5分
(2)菱形Z8C。中,AB=BC,N5=60。,
•,*/\ABC是等边三角形,
:.AC=AB=10fNZCB=60。,
I.ZACP=\20°,
•;/CAM=NR4C,
:.丛CAMsAPAC,.............8分
•,•AMAC,
ACAP
.\AM=—=—=4..............10分
AP25
26.解:(1)②④;....................................................2分
(2)(x-2)(x-w)=0,x-2=0或x-m=0,
解得xi=2,X2=tn,
V(x-2)(x-m)=0是“倍根方程”,
・••加=4或〃7=1,...................................................4分
当机=4时,加2+2机+2=16+8+2=26;..............................5分
当加=1时,m2+2m+2=\+2+2=5,...........................................................6分
综上所述,代数式m2+2m+2的值为26或5:
(3):一元二次方程。/+/+。=0(Z>2-4ac>0)是倍根方程,
,设方程的两根分别为f,2t,
根据根与系数的关系得什2f=-且,
aa
:.t=-旦,......................................................8分
3a
:.2(--L)2=£,
3aa
:.2h2=9ac.......................................................................................................10分
27.解:(1)如图1,•・•四边形Z5CD是平行四边形,AB=8,3C=4,ZABC=60°.
:.AB〃CD,AB=CD=Sf
:.ZDCP=ZABC=60°f
・・・。。与QP相切,
:・DPLBP,
:.ZCPD=90°f
:.ZCDP=900-ZDCP=30°,
...CP=*£>=4,
2
・・・。。的半径x=4,..........2分
(2)①•・•点P与点C重合,
・・・8C为。。的直径,
・・・NBEC=90。,
:./BCE=90。-NC8E=30。,
:・BE=、BC=2,
2
在RtABCE中,
CE=>JBC2-BE2=V42-22=2收
........................................................4分
②如图2,连接OE,
':BE=BE,
,NBOE=2NBCE=60。,
过点E作EHLOB于H,则NOEH=30。,
:.OH=^OE=\,
/.EH=y/OE2—OH2=A/22—l2=V3,
••S阴影=S遢形OBE~S^OBE
=喏-Mg4-倔……6分
36023
(3)①当。。与直线8相切时,如图3,
C.OFVCD.
・・・/0/。=90。,
ZOCF=ZABC=60°f
:.ZCOF=30°9
:.CF=^OCf
*:OB=OF=x,
:.OC=4-x,CF=3(4-X),
2
・.・。/+0产=ocs
.,.[1(4-x)]2+/=(4-x)2,
解得:x=-12+8V^2x=-12-8V3(舍去)圉椒分
②当。。与直线/。相切时,如图4,过点。作。T_L/。于7,连接NC,
则OT=OB=x,
取的中点G,连接CG,
:.BG=AG=-2AB=4=BC,
•//力BC=60。,
*e•△8CG是等边三角形,
:.CG=BC=4=AG,
:.ZBAC=ZACG=30°f
:./ACB=90。,
:.AC=A/82-42=4V3,
ZACO=90°,
•.•四边形/8C。是平行四边形,
:.AD//BC,
:.ZTOC=ZDTO=ZATO=90°=ZACO,
...四边形4cOT是矩形,
.'.x—OT—AC—4y/3;
综上所述,x=-12+873^473;…10分
28.W:(1)①;四边形是菱形,
:.CD//AB,BC=AB=2,
:.AEFCsAEAB,
•CFEC
*'AB'EB"
/.CF=A;................................2分
3
②过点/作NT,8c于点T,如图1,
;//8C=60。,AB=2,
:.ZBAT=30°,
:.BT=\,CT=BC-BT=\,
AT=VAB2-BT2=V3,
'."CE^4,
:.TE=CT+CE^5,
"-AE=VAT2+TE2=V3+25=2V7.
':AD//BC,
:./\APDsMEPB,
.ADAP
••瓯词
:.AP=LPE=LAE=近.
342
'JAD//BC,
,△4DFS/\ECF,
•ADAF
"CE"EF'
:.AF=LEF=LE=3L,
233
:.PF=AF-AP="JZ-;............4分
6
(2)过点B作交。/的延长线于点E,过点N作NF,/。,交力。的延长线于点尸,
如图2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育心理咨询在家庭教育中的作用
- 数字化管理在小型咖啡店中的实践应用案例分析
- 2025年度肉类产品行业技术交流与合作促进合同3篇
- 第四单元建立网站第14课一、检查与测试网站说课稿 2023-2024学年人教版初中信息技术七年级上册
- 第6课 现代科技进步与人类社会发展 说课稿-2023-2024学年高二历史统编版(2019)选择性必修2经济与社会生活
- 7-生命最宝贵:《爱护身体 珍惜生命》(说课稿)统编版道德与法治三年级上册
- 2025年房产租赁合同书6篇
- 2025年度金融行业委托招聘高级管理人员合同协议3篇
- 18《牛和鹅》第一课时(说课稿)-2024-2025学年统编版语文四年级上册
- 2025年度碎石资源开发与销售合作协议3篇
- DZ∕T 0348-2020 矿产地质勘查规范 菱镁矿、白云岩(正式版)
- 任务型阅读15篇(成都名校模拟)-2024年中考英语逆袭冲刺名校模拟真题速递(四川专用)
- 高流量呼吸湿化氧疗操作考核
- 2024年长春医学高等专科学校单招职业技能测试题库及答案解析
- 2024年正定县国资产控股运营集团限公司面向社会公开招聘工作人员高频考题难、易错点模拟试题(共500题)附带答案详解
- 可口可乐火炬营销案例分析
- 赤峰市松山区王府镇水泉沟矿泉水2024年度矿山地质环境治理计划书
- 某年机关老干部工作总结
- 股骨干骨折(骨科)
- 胸心外科细化标准
- 身心灵疗愈行业报告
评论
0/150
提交评论