2024年吉林省长春市净月区委托管理学校八年级下册数学期末综合测试模拟试题含解析_第1页
2024年吉林省长春市净月区委托管理学校八年级下册数学期末综合测试模拟试题含解析_第2页
2024年吉林省长春市净月区委托管理学校八年级下册数学期末综合测试模拟试题含解析_第3页
2024年吉林省长春市净月区委托管理学校八年级下册数学期末综合测试模拟试题含解析_第4页
2024年吉林省长春市净月区委托管理学校八年级下册数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年吉林省长春市净月区委托管理学校八年级下册数学期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若分式的值为0,则x的取值为()A.x1 B.x1 C.x1 D.无法确定2.根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()天数31111PM2.51820212930A.21微克立方米 B.20微克立方米C.19微克立方米 D.18微克立方米3.当x=-3时,二次根式6-x的值为()A.3 B.-3 C.±3 D.34.在一次“爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为6,3,6,5,5,6,9.这组数据的中位数和众数分别是()A.5,5 B.6,6 C.6,5 D.5,65.在矩形中,,,点是上一点,翻折,得,点落在上,则的值是()A.1 B.C. D.6.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A. B.C. D.7.如图,在中,平分交于点,平分,,交于点,若,则()A.75 B.100 C.120 D.1258.某种出租车的收费标准是:起步价8元(即距离不超过,都付8元车费),超过以后,每增加,加收1.2元(不足按计).若某人乘这种出租车从甲地到乙地经过的路程是,共付车费14元,那么的最大值是().A.6 B.7 C.8 D.99.下列根式不是最简二次根式的是()A. B. C. D.10.一辆汽车以50的速度行驶,行驶的路程与行驶的时间之间的关系式为,其中变量是()A.速度与路程 B.速度与时间 C.路程与时间 D.速度二、填空题(每小题3分,共24分)11.若关于x的不等式2x﹣3a+2≥0的最小整数解为5,则实数a的值为_____12.将直线y=﹣4x+3向下平移4个单位,得到的直线解析式是_____.13.计算:(2+)(2-)=_______.14.如图,在等腰梯形ABCD中,AC⊥BD,AC=6cm,则等腰梯形ABCD的面积为__________cm1.15.已知,为实数,且满足,则_____.16.若分式的值为0,则的值为________.17.如图,一架15m长的梯子AB斜靠在一竖直的墙OA上,这时梯子的顶端A离地面距离OA为12m,如果梯子顶端A沿墙下滑3m至C点,那么梯子底端B向外移至D点,则BD的长为___m.18.一个小区大门的栏杆如图所示,垂直地面于,平行于地面,那么_________.三、解答题(共66分)19.(10分)一辆轿车从甲地驶往乙地,到达乙地后立即返回甲地,速度是原来的1.5倍,往返共用t小时.一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶,设轿车行驶的时间为x(h),两车离开甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图所示.(1)轿车从乙地返回甲地的速度为km/t,t=h

;(2)求轿车从乙地返回甲地时y与x之间的函数关系式;(3)当轿车从甲地返回乙地的途中与货车相遇时,求相遇处到甲地的距离.20.(6分)如图1,为美化校园环境,某校计划在一块长为20m,宽为15m的长方形空地上修建一条宽为a(m)的甬道,余下的部分铺设草坪建成绿地.(1)甬道的面积为m2,绿地的面积为m2(用含a的代数式表示);(2)已知某公园公司修建甬道,绿地的造价W1(元),W2(元)与修建面积S之间的函数关系如图2所示.①园林公司修建一平方米的甬道,绿地的造价分别为元,元.②直接写出修建甬道的造价W1(元),修建绿地的造价W2(元)与a(m)的关系式;③如果学校决定由该公司承建此项目,并要求修建的甬道宽度不少于2m且不超过5m,那么甬道宽为多少时,修建的甬道和绿地的总造价最低,最低总造价为多少元?21.(6分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,线段AB的长度为;若在图中画出以C为直角顶点的Rt△ABC,使点C在格点上,请在图中画出所有点C;(2)在图②中,以格点为顶点,请先用无刻度的直尺画正方形ABCD,使它的面积为13;再画一条直线PQ(不与正方形对角线重合),使PQ恰好将正方形ABCD的面积二等分(保留作图痕迹).22.(8分)如图,△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB(1)求证:四边形EFCD是菱形;(2)设CD=2,求D、F两点间的距离.23.(8分)某市从今年1月l同起调整居民用水价格,每立方米水费上涨20%.小丽家去年12月份的水费是15元,而今年5月的水费则是10元.已知小丽家今年5月的用水量比去年12月的用水量多5m1.求该市今年居民用水的价格.24.(8分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系式.根据题中所给信息解答以下问题:(1)甲、乙两地之间的距离为______km;图中点C的实际意义为:______;慢车的速度为______,快车的速度为______;(2)求线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范围;(3)若在第一列快车与慢车相遇时,第二列车从乙地出发驶往甲地,速度与第一列快车相同,请直接写出第二列快车出发多长时间,与慢车相距200km.25.(10分)如图,点E,F在矩形的边AD,BC上,点B与点D关于直线EF对称.设点A关于直线EF的对称点为G.(1)画出四边形ABFE关于直线EF对称的图形;(2)若∠FDC=16°,直接写出∠GEF的度数为;(3)若BC=4,CD=3,写出求线段EF长的思路.26.(10分)“大美武汉,畅游江城”.某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有1200名学生,请估计“最想去景点B“的学生人数.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可,据此列等式,可以解答本题.【详解】根据题意得:,且,解得:x=1,故选A.【点睛】本题考查分式的值为零的条件,解题的关键是知道分式的值为1的条件是:(1)分子=1;(2)分母≠1.2、B【解析】

按大小顺序排列这组数据,最中间那个数是中位数.【详解】解:从小到大排列此数据为:18,18,18,1,21,29,30,位置处于最中间的数是:1,

所以组数据的中位数是1.

故选B.【点睛】此题主要考查了中位数.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.3、A【解析】

把x=-3代入二次根式进行化简即可求解.【详解】解:当x=-3时,6-x=故选A.【点睛】本题考查了二次根式的计算,正确理解算术平方根的意义是关键.4、B【解析】

根据中位数的概念:是按顺序排列的一组数据中居于中间位置的数,将这一组数据进行排列,即可得出中位数;根据众数的定义:是一组数据中出现次数最多的数值,即可判定众数.【详解】解:将这一组数按照从高到低的顺序排列,得3,5,5,6,6,6,9,则其中位数为6;这组数中出现次数最多的数是6,即为众数,故答案为B.【点睛】此题主要考查对中位数和众数的理解,熟练掌握其内涵,即可解题.5、D【解析】

设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BC`=BC=5,EC`=CE=x,DE=CD-CE=3-x.在Rt△ABC`中利用勾股定理求出AC`的长度,进而求出DC`的长度;然后在Rt△DEC`中根据勾股定理列出关于x的方程,即可解决问题.【详解】设CE=x.∵四边形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵将△BCE沿BE折叠,使点C恰好落在AD边上的点C`处,∴BC`=BC=5,EC`=CE=x,DE=CD−CE=3−x.在Rt△ABC`中,由勾股定理得:AC`=5−3=16,∴AC`=4,DC`=5−4=1.在Rt△DEC`中,由勾股定理得:EC`=DE+DC`,即x=(3−x)+1,解得:x=.故选D【点睛】此题考查翻折变换(折叠问题),解题关键在于利用勾股定理进行计算6、C【解析】

根据a、b的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.【详解】解:分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,C选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选C.【点睛】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.7、B【解析】

根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理求得CE1+CF1=EF1.【详解】∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE1+CF1=EF1=2.故选:B【点睛】本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用.8、C【解析】

已知从甲地到乙地共需支付车费14元,从甲地到乙地经过的路程为x千米,首先去掉前3千米的费用,从而根据题意列出不等式,从而得出答案.【详解】设某人从甲地到乙地经过的路程是x千米,根据题意,得:8+1.2(x−3)⩽14,解得:x⩽8,即x的最大值为8km,故选C.【点睛】此题考查一元一次不等式的应用,解题关键在于列出方程9、C【解析】【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式)是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A.,是最简二次根式,不符合题意;B.,是最简二次根式,不符合题意;C.,不是最简二次根式,符合题意;D.,是最简二次根式,不符合题意,故选C.【点睛】本题考查了最简二次根式,规律总结:满足下列两个条件的二次根式,叫做最简二次根式.(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.10、C【解析】

在函数中,给一个变量x一个值,另一个变量y就有对应的值,则x是自变量,y是因变量,据此即可判断.【详解】解:由题意的:s=50t,路程随时间的变化而变化,则行驶时间是自变量,行驶路程是因变量;故选:C.【点睛】此题主要考查了自变量和因变量,正确理解自变量与因变量的定义,是需要熟记的内容.二、填空题(每小题3分,共24分)11、<a≤1【解析】

先将a看作常数解不等式,根据最小整数解为5,得1<≤5,解出即可.【详解】解不等式2x-3a+2≥0得x≥,∵不等式的最小整数解为5,∴1<≤5,∴<a≤1,故答案为<a≤1.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.12、y=﹣4x﹣1【解析】

根据上加下减的法则可得出平移后的函数解析式.【详解】解:将直线y=﹣4x+3向下平移4个单位得到直线l,则直线l的解析式为:y=﹣4x+3﹣4,即y=﹣4x﹣1.故答案是:y=﹣4x﹣1【点睛】本题考查了一次函数图象与几何变换的知识,难度不大,掌握上加下减的法则是关键.13、1【解析】

根据实数的运算法则,利用平方差公式计算即可得答案.【详解】(2+)(2-)=22-()2=4-3=1.故答案为:1【点睛】本题考查实数的运算,熟练掌握运算法则并灵活运用平方差公式是解题关键.14、2【解析】

根据等腰梯形的性质、梯形面积公式求解即可.【详解】∵四边形ABCD是等腰梯形,∴∴等腰梯形ABCD的面积故答案为:2.【点睛】本题考查了梯形的面积问题,掌握等腰梯形的性质、梯形面积公式是解题的关键.15、4【解析】

直接利用二次根式有意义的条件得出、的值,进而得出答案.【详解】、为实数,且满足,,,则.

故答案为:.【点睛】此题主要考查了二次根式有意义的条件,正确得出、的值是解题关键.16、2【解析】由分式的值为0时,分母不能为0,分子为0,可得2x-4=0,x+1≠0,解得x=2,故选C.17、1【解析】

先根据勾股定理求出OB的长,再在Rt△COD中求出OD的长,进而可得出结论.【详解】解:在Rt△ABO中,∵AB=15m,AO=12m,∴OB==9m.同理,在Rt△COD中,DO==12m,∴BD=OD﹣OB=12﹣9=1(m).故答案是:1.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.18、【解析】

作CH⊥AE于H,如图,根据平行线的性质得∠ABC+∠BCH=180°,∠DCH+∠CHE=180°,则∠DCH=90°,于是可得到∠ABC+∠BCD=270°.【详解】解:作CH⊥AE于H,如图,

∵AB⊥AE,CH⊥AE,

∴AB∥CH,

∴∠ABC+∠BCH=180°,

∵CD∥AE,

∴∠DCH+∠CHE=180°,

而∠CHE=90°,

∴∠DCH=90°,

∴∠ABC+∠BCD=180°+90°=270°.

故答案为270°.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.三、解答题(共66分)19、(1)120;;(2)y=-120x+300;(3)100km.【解析】

(1)根据图象可得当x=小时时,据甲地的距离是120千米,即可求得轿车从甲地到乙地的速度,进而求得轿车从乙地返回甲地的速度和t的值;(2)利用待定系数法即可求解;(3)利用待定系数法求得轿车从乙地到甲地的函数解析式和货车路程和时间的函数解析式,求交点坐标即可.【详解】解:(1)轿车从甲地到乙地的速度是:=80(千米/小时),则轿车从乙地返回甲地的速度为80×1.5=120(千米/小时),则t=+=(小时).故答案是:120,;(2)设轿车从乙地返回甲地的函数关系式为:y=kx+b.将(,120)和(,0),两点坐标代入,得,解得:,所以轿车从乙地返回甲地时y与x之间的函数关系式为:y=-120x+300;(3)设货车从甲地驶往乙地的函数关系式为:y=ax将点(2,120)代入解得,解得a=60,故货车从甲地驶往乙地时y与x之间的函数关系式为:y=60x.由图象可知当轿车从乙地返回甲地时,两车相遇,路程相等,即-120x+300=60x解得x=,当x=时,y=100.故相遇处到甲地的距离为100km【点睛】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题,熟练掌握待定系数法和一次函数图像交点坐标与二元一次方程组的关系是关键.20、(1)15a、(300﹣15a);(2)①①80、70;;②W1=80×15a=1200a,W2=70(300﹣15a)=﹣1050a+21000;③甬道宽为2米时,修建的甬道和绿地的总造价最低,最低总造价为21300元;【解析】

(1)根据图形即可求解;(2)①园林公司修建一平方米的甬道,绿地的造价分别为=80元,=70元②根据题意即可列出关系式;③W=W1+W2=1200a+(﹣1050a+21000)=150a+21000,再根据2≤a≤5,即可进行求解.【详解】解:(1)甬道的面积为15am2,绿地的面积为(300﹣15a)m2;故答案为:15a、(300﹣15a);(2)①园林公司修建一平方米的甬道,绿地的造价分别为=80元,=70元.②W1=80×15a=1200a,W2=70(300﹣15a)=﹣1050a+21000;③设此项修建项目的总费用为W元,则W=W1+W2=1200a+(﹣1050a+21000)=150a+21000,∵k>0,∴W随a的增大而增大,∵2≤a≤5,∴当a=2时,W有最小值,W最小值=150×2+21000=21300,答:甬道宽为2米时,修建的甬道和绿地的总造价最低,最低总造价为21300元;故答案为:①80、70;【点睛】此题主要考查一次函数的应用,解题的关键是根据题意得到关系式进行求解.21、(1),答案见解析;(2)答案见解析.【解析】

(1)直接利用勾股定理以及勾股定理的逆定理进而分析得出答案;(2)直接利用网格结合正方形的性质分析得出答案.【详解】解:(1)线段AB的长度为:;点C共6个,如图所示:(2)如图所示:直线PQ只要过AC、BD交点O,且不与AC,BD重合即可.【点睛】此题主要考查了应用设计与作图以及勾股定理,正确应用正方形的性质是解题关键.22、(1)见解析;(2)【解析】

(1)由等边三角形的性质得出ED=CD=CE,证出△CEF是等边三角形,得出EF=CF=CE,得出ED=CD=EF=CF,即可得出结论;(2)连接DF,与CE相交于点G,根据菱形的性质求出DG,即可得出结果.【详解】(1)证明:∵△ABC与△CDE都是等边三角形,∴ED=CD=CE,∠A=∠B=∠BCA=60°.∴EF∥AB.∴∠CEF=∠A=60°,∠CFE=∠B=60°,∴∠CEF=∠CFE=∠ACB,∴△CEF是等边三角形,∴EF=CF=CE,∴ED=CD=EF=CF,∴四边形EFCD是菱形.(2)连接DF与CE交于点G∵四边形EFCD是菱形∴DF⊥CE,DF=2DG∵CD=2,△EDC是等边三边形∴CG=1,DG=∴DF=2DG=,即D、F两点间的距离为【点睛】本题考查了菱形的判定与性质、等边三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质是解题的关键.23、该市今年居民用水的价格是每立方米2.4元.【解析】

利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m1,进而得出等式即可.【详解】设去年居民用水价格为x元/m1,根据题意列方程:,解得:x=2,经检验:x=2是原方程的根,∴(1+20%)x=2.4,答:该市今年居民用水的价格是每立方米2.4元.【点睛】本题考查了分式方程的应用,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24、(1)960;当慢车行驶6h时,快车到达乙地;80km/h;160km/h;(2)线段BC所表示的y与x之间的函数关系式为y=240x-960,自变量x的取值范围是4≤x≤6;(3)第二列快车出发1.5h,与慢车相距200km.【解析】

(1)x=0时两车之间的距离即为两地间的距离,根据横坐标和两车之间的距离增加变慢解答,分别利用速度=路程÷时间列式计算即可得解;

(2)求出相遇的时间得到点B的坐标,再求出两车间的距离,得到点C的坐标,然后设线段BC的解析式为y=kx+b,利用待定系数法求一次函数解析式解答;

(3)设第二列快车出发a小时两车相距200km,然后分相遇前与相遇后相距200km两种情况列出方程求解即可.【详解】解:(1)由图象可知,甲、乙两地间的距离是960km;图中点C的实际意义是:当慢车行驶6h时,快车到达乙地;慢车速度是:960÷12=80km/h,快车速度是:960÷6=160km/h;故答案为:960;当慢车行驶6h时,快车到达乙地;80km/h;160km/h;(2)根据题意,两车行驶960km相遇,所用时间=4h,所以,B点的坐标为(4,0),2小时两车相距2×(160+80)=480km,所以,点C的坐标为(6,480),设线段BC的解析式为y=kx+b,则,解得k=240,b=-960,所以,线段BC所表示的y与x之间的函数关系式为y=240x-960,自变量x的取值范围是4≤x≤6;(3)设第二列快车出发a小时两车相距200km,分两种情况,①若是第二列快车还没追上慢车,相遇前,则4×80+80a-160a=200,解得a=1.5,②若是第二列快车追上慢车以后再超过

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论