未来能源研究所-2024年全球能源展望:高峰还是高原?Global Energy Outlook 2024 Peaks or Plateaus_第1页
未来能源研究所-2024年全球能源展望:高峰还是高原?Global Energy Outlook 2024 Peaks or Plateaus_第2页
未来能源研究所-2024年全球能源展望:高峰还是高原?Global Energy Outlook 2024 Peaks or Plateaus_第3页
未来能源研究所-2024年全球能源展望:高峰还是高原?Global Energy Outlook 2024 Peaks or Plateaus_第4页
未来能源研究所-2024年全球能源展望:高峰还是高原?Global Energy Outlook 2024 Peaks or Plateaus_第5页
已阅读5页,还剩92页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

GlobalEnergyOutlook2024:PeaksorPlateaus?

DanielRaimi,YuqiZhu,RichardG.Newell,andBrianC.Prest

Report24-06

April2024

AbouttheAuthors

DanielRaimiisafellowatResourcesfortheFuture(RFF)andalecturerattheGeraldR.FordSchoolofPublicPolicyattheUniversityofMichigan.Heworksonarangeof

energypolicyissueswithafocusontoolstoenableanequitableenergytransition.HehaspublishedinacademicjournalsincludingScience,ScienceAdvances,EnvironmentalScienceandTechnology,JournalofEconomicPerspectives,ReviewofEnvironmentalEconomicsandPolicy,EnergyResearchandSocialScience,andEnergyPolicy,in

popularoutletsincludingTheNewRepublic,Newsweek,Slate,andFortune,andquotedextensivelyinnationalmediaoutletssuchasCNN,NPR’sAllThingsConsidered,

NewYorkTimes,WallStreetJournal,andmanymore.Hehaspresentedhisresearchforpolicymakers,industry,andotherstakeholdersaroundtheUnitedStatesand

internationally,includingbeforetheUSSenateBudgetCommitteeandtheEnergyandMineralResourcesSubcommitteeoftheUSHouse’sNaturalResourcesCommittee.

In2017,hepublishedTheFrackingDebate(ColumbiaUniversityPress),abookthatcombinesstoriesfromhistravelstodozensofoil-andgas-producingregionswithadetailedexaminationofkeypolicyissues.

YuqiZhujoinedRFFasaseniorresearchassociatein2022afterreceivinghismaster’s

degreeinpublicpolicyfromtheHarvardKennedySchool.Priortograduateschool,he

workedincorporatedevelopmentatLibertyMedia,amediaandcommunicationsholdingcompanyinDenver.

RichardG.NewellisthepresidentandCEOofRFF,anindependentnonprofitresearch

institutionthatimprovesenvironmental,energy,andnaturalresourcedecisionsthroughimpartialeconomicresearchandpolicyengagement.Hehasheldseniorgovernment

appointmentsastheAdministratoroftheUSEnergyInformationAdministrationandastheSeniorEconomistforenergyandenvironmentonthePresident’sCouncilofEconomicAdvisers.Dr.NewellwaspreviouslytheGendellProfessorofEnergyandEnvironmentalEconomicsatDukeandDirectorofitsEnergyInitiativeandisnowadjunctprofessor.Hehaspublishedwidelyontheeconomicsofmarketsandpoliciesforclimatechange,the

cleanenergytransition,andtechnologyinnovation.HeisaboardmemberoradvisorattheNationalAcademyofSciencesClimateSecurityRoundtable,theEuro-MediterraneanCenteronClimateChange,theNationalPetroleumCouncil,andseveralotherinstitutionsandco-chairedaformativeNationalAcademiesstudyonthesocialcostofgreenhousegases.NewellholdsaPhDfromHarvardandanMPAfromPrinceton.

BrianC.PrestisaneconomistandfellowatRFFspecializingintheeconomicsofclimatechange,energyeconomics,andoilandgassupply.Prestuseseconomictheoryand

econometricstoimproveenergyandenvironmentalpoliciesbyassessingtheirimpactsonsociety.Hisrecentworkincludesimprovingthescientificbasisofthesocialcost

ofcarbonandeconomicmodelingofvariouspoliciesaroundoilandgassupply.His

researchhasbeenpublishedinpeer-reviewedjournalssuchasNature,theBrookings

PapersonEconomicActivity,theJournaloftheAssociationofEnvironmentaland

ResourceEconomists,andtheJournalofEnvironmentalEconomicsandManagement.

HisworkhasalsobeenfeaturedinpopularpressoutletsincludingtheWashingtonPost,theWallStreetJournal,theNewYorkTimes,Reuters,theAssociatedPress,andBarron’s.

ResourcesfortheFuturei

Acknowledgements

WethankStuIler,whoinitiallydevelopedtheplatformforharmonizingoutlooks.

WearealsogratefultoLauraCozziandDavideD’AmbrosioattheIEA,AprilRossatExxonMobil,ChristianMollardatEnerdata,AstridNåvikatEquinor,MichaelCohen

andJorgeBlazquezatbp,GeorgiosBoniasatShell,andtheEIAmacroeconomicsandemissionsteamforprovidingdataandrespondingtoquestionsinthepreparationofthisreport.RichardG.Newellconceivedoftheproject;DanielRaimiandYuqiZhuleddatacollectionandharmonization;andDanielRaimileddataanalysisanddraftingofthereport,withtheexceptionsofSections3.1(YuqiZhu)and3.2(BrianC.Prest).Allauthorsreviewedandapprovedofthefinaldraft.

AboutRFF

ResourcesfortheFuture(RFF)isanindependent,nonprofitresearchinstitutionin

Washington,DC.Itsmissionistoimproveenvironmental,energy,andnaturalresourcedecisionsthroughimpartialeconomicresearchandpolicyengagement.RFFis

committedtobeingthemostwidelytrustedsourceofresearchinsightsandpolicysolutionsleadingtoahealthyenvironmentandathrivingeconomy.

TheviewsexpressedherearethoseoftheindividualauthorsandmaydifferfromthoseofotherRFFexperts,itsofficers,oritsdirectors.

SharingOurWork

OurworkisavailableforsharingandadaptationunderanAttribution-

NonCommercial-NoDerivatives4.0International(CCBY-NC-ND4.0)license.Youcancopyandredistributeourmaterialinanymediumorformat;youmustgive

appropriatecredit,providealinktothelicense,andindicateifchangesweremade,andyoumaynotapplyadditionalrestrictions.Youmaydosoinanyreasonable

manner,butnotinanywaythatsuggeststhelicensorendorsesyouoryouruse.Youmaynotusethematerialforcommercialpurposes.Ifyouremix,transform,orbuilduponthematerial,youmaynotdistributethemodifiedmaterial.Formoreinformation,visit

/licenses/by-nc-nd/4.0/

.

GlobalEnergyOutlook2024:PeaksorPlateaus?ii

Highlights

Coal,oil,andnaturalgasconsumptionreachtheirhighestpointsbefore2030butremainhighthrough2050inmanyscenarios.Achievinginternationalclimatetargetswill

requireallthreefossilfuelstodeclinemuchmorequickly,resemblingapeak,notaplateau.

Althoughtheyarecontroversialforavarietyofreasons,carbondioxideremoval(CDR)technologiesaredeployedrapidlyandatscaleineveryscenariothatlimitsglobal

warmingto1.5°Cor2°Cby2100.Thissuggeststheneedforthedevelopmentofrobustmonitoring,reporting,andverificationstandards,alongwithadditionalmeasurestopreventCDRfromcreatingmajornewenvironmentalorsocialchallenges.

Projecteddemandforenergy-relatedmetalsandmineralsgrowsrapidly,particularlyunderAmbitiousClimate

scenarios,risingbyordersofmagnitudeforsomecriticalminerals.Suchgrowthraisesnewquestionsoversupplycosts,geopolitics,localenvironmentalimpacts,andmore.

AtCOP28intheUAE,22nationspledgedtotriplenuclearenergycapacityby2050.Achievingthisgoalatthegloballevelwouldrequireareturntogrowthratesnotseensincethe1980s.Since2010,globalnuclearenergyproductionhasdeclinedbynearly5percent,dueprimarilytoplant

closuresinEurope,Japan,andtheUnitedStates.

ProjectedenergydemandinChinahasbeenrevised

downwardsubstantiallyinrecentyears,reflectinga

decliningpopulationandmajoreconomicheadwinds.Coupledwithnewpoliciesconcerningairqualityandclimatechange,thesetrendsarecontributingtolowerprojectedcoaluseandcarbondioxideemissionsinthedecadesahead.

ResourcesfortheFutureiii

Contents

1.Introduction1

2.KeyFindings3

3.InFocus13

3.1.China’sEvolvingEnergyFutureagainstaForebodingEconomicOutlook13

3.2.EmergingTechnologiesforAchievingNetZero17

3.2.1.Hydrogen17

3.2.2.CarbonCapture,Use,andStorage(CCUS)andDirectAirCapture(DAC)19

3.2.3.BacktotheFuture(ofthePast)20

3.3.ANewEraofMining21

3.3.1.Cobalt22

3.3.2.Copper23

3.3.3.Lithium24

3.3.4.Nickel25

3.3.5.OtherMinerals26

4.DataandMethods27

4.1.Harmonization29

5.Statistics31

References40

GlobalEnergyOutlook2024:PeaksorPlateaus?iv

1.Introduction

Thefutureoftheglobalenergysystemisdeeplyuncertain,andthechoicesthataremadeinthecomingyearswillhaveenormousconsequencesforthefutureoftheclimateand,indeed,humancivilization.Tounderstandhowourenergysystemischanging,eachyearavarietyoforganizationsproducelong-termprojections

thatimagineawiderangeoffuturesbasedondivergentvisionsaboutpolicies,

technologies,prices,andgeopolitics.

Becausetheseprojectionsvarywidelyanddependheavilyontheirvariedassumptionsandmethodologies,theyaredifficulttocompareonanapples-to-applesbasis.Inthisreport,weapplyadetailedharmonizationprocesstocompare16scenariosacross

eightenergyoutlookspublishedin2023,aswellastwohistoricaldatasources.Takentogether,thesescenariosofferabroadscopeofpotentialchangestotheenergy

systemasenvisionedbysomeofitsmostknowledgeableorganizations.Table1liststhehistoricaldatasets,outlooks,andscenariosexaminedhere,andadditionaldetailisprovidedinSection4.

Table1.Datasets,Outlooks,andScenariosExaminedinThisReport

Source

Datasetoroutlook

Scenario(s)

Years

Grubler(2008)1

Historical

1800–1970

IEA(2022)2

Historical

1970–2021

bp(2023)3

EnergyOutlook2023

NewMomentum,AcceleratedTransition,NetZero

To2050

EIA(2023)4

InternationalEnergyOutlook2023

Reference

To2050

Enerdata(2023)5

EnerFuture2023

EnerBase,EnerBlue,EnerGreen

To2050

Equinor(2023)6

2023EnergyPerspectives

Walls,Bridges

To2050

ExxonMobil(2023)7

2023GlobalOutlook

Reference

To2050

IEA(2023)8

WorldEnergyOutlook2023

StatedPolicies(STEPS),AnnouncedPledges(APS),NetZeroEmissionsby2050(NZE)

To2050

OPEC(2023)9

WorldOilOutlook2023

Reference

To2045

Shell(2023)10

EnergySecurityScenarios

Archipelagos,Sky2050

To2100

GlobalEnergyOutlook2024:PeaksorPlateaus?1

AbriefdescriptionofourmethodologyisprovidedinSection4,withselectindicatorsinSection5.Forthefullmethodologyandinteractivegraphingtools,visit

/geo

.

Throughoutthefiguresincludedinthisreport,weuseaconsistentlabelingsystemthatdistinguishesamongthedifferenttypesofscenarios(seeTable2):

•ForReferencescenarios,whichassumelimitedornonewpolicies,weuse

long-dashedlines;thissetcomprisesReferencescenariosfromtheUSEnergyInformationAdministration(EIA),Enerdata’sEnerBase,ExxonMobil,andOPEC.

•ForEvolvingPoliciesscenarios,whichassumethatpoliciesandtechnologies

developaccordingtorecenttrendsortheexpertviewsoftheteamproducingtheoutlook,weusesolidlines;thissetcomprisesbpNewMomentumandIEASTEPS.Althoughtheydonotfollowthesamesetsofassumptions,wealsoincludeEquinorWallsandShellArchipelagosbecausetheirCO2emissionstrajectoriesaresimilartothoseinotherEvolvingPoliciesscenarios.Inaddition,weincludeEnerdata’s

EnerBlueandIEA’sAPS,whichassumegovernmentsimplementtheirnationallydeterminedcontributions(NDCs)undertheParisAgreement;forthese,weusedot-dashlines.

•AmbitiousClimatescenariosarenotdesignedaroundpoliciesbutinsteadare

structuredtoachievespecificclimatetargets.Forthosethatlimitglobalmean

temperaturerisetobelow2°Cby2100(bp’sAcceleratedTransitionandEnerdata’sEnerGreen),weuseshort-dashedlines.Forscenariosdesignedtolimitglobal

meantemperatureriseto1.5°Cby2100ornet-zeroemissionsby2050(bpNetZero,EquinorBridges,IEANZE,andShell’sSky2050),weusedottedlines.

Table2.LegendforDifferentScenarioTypes

Reference

Evolvingpolicies

Ambitiousclimate

EIA

bpNewMomentum

bpAccel.Transition(2°C)

EnerdataEnerbase

IEASteps

EnerdataEnerGreen(2°C)

ExxonMobil

EquinorWalls

bpNetZero(1.5°C)

OPEC

ShellArchipelagos

EquinorBridges(1.5°C)

EnerdataEnerBlue

IEANZE(1.5°C)

IEAAPS

ShellSky2050(1.5°C)

FiguresandtablesinthisreportsometimesrefertoregionalgroupingsofEastandWest.Table3definesthoseregionalgroupings.

Table3.RegionalDefinitionsfor“East”and“West”

“East”

Africa,Asia-Pacific,MiddleEast

“West”

Americas,Europe,Eurasia

ResourcesfortheFuture2

2.KeyFindings

Atthe28thConferenceoftheParties(COP28)totheUnitedNationsFramework

ConventiononClimateChangeheldinDubai,worldleadersagreedto“transitioningawayfromfossilfuelsintheenergysystem.”11Someadvocates,governments,and

civilsocietyfigureshavecritiquedthisagreementandarguedinsteadforthetotal

phaseoutoffossilfuelstoachievelong-termclimategoals.However,allscenarios

examinedhere,includingthoseconsistentwithlimitingwarmingto1.5°Cby2100,showsubstantialglobalfossilfuelconsumptionthroughatleast2050,suggestingthata

phaseoutisnotaprerequisitetoachievinginternationalclimategoals.

Figure1.GlobalFossilFuelDemandPeaksandDeclinesRapidlyinAmbitiousClimateScenarios

Note:Includesprimaryenergydemandforcoal,oil,andnaturalgas.HistoricaldatafromShell.

AswehavenotedinpreviousGlobalEnergyOutlooks,12worldprimaryenergydemandhasexperiencedaseriesofenergyadditions,notenergytransitions,withnewer

technologiessuchasnuclear,wind,andsolarbuildingontopofincumbentsourcessuchasbiomass,coal,oil,andnaturalgas.Toachieveinternationalclimategoalsandlimitwarmingto1.5°Cor2°Cby2100,atrueenergytransitionisneeded.Butdoes

achievingsuchgoalsrequirephasingoutfossilfuelsentirely?

Thescenariosweanalyzeinthisreportsuggestthattheanswerisno.Likemost

scenariospublishedinrecentyearsbytheIntergovernmentalPanelonClimateChange(IPCC),13,14fossilfuelusedeclinesbutremainssubstantialthroughmidcenturyand

beyond,evenunderscenariosthatlimitwarmingto1.5°C.SeveralAmbitiousClimate

scenariosshowglobalfossilfueluseofroughly100quadrillionBritishthermalunits

(QBtu)in2050,slightlyhigherthantotalUSprimaryenergydemand.Thewiderangeofprojectedfossilfueldemandalsohighlightsthedeepuncertaintyofthefutureoftheworldenergysystem,with2050scenariosspanning487QBtu,roughlyequivalentto

globalconsumptionoffossilfuelsin2022.

GlobalEnergyOutlook2024:PeaksorPlateaus?3

Iffossilfuelsarenotphasedoutoftheenergysystem,limitingwarmingtointernational

climatetargetsimpliesasubstantialscale-upofcarbonremovaltechnologies,including

directaircapture(DAC),bioenergywithcarboncaptureandstorage(CCS),andnature-

basedsolutions,allofwhichwillrequirerobustmonitoring,reporting,andverification.

Althoughthesetechnologiesarecontroversialforavarietyofreasons,theirapplicationatscaleisanessentialtoolinreachingnet-zeroemissionsineveryAmbitiousClimatescenarioexaminedhere.

Figure2.WorldCarbonCapture,Use,andStorageRisesSharplyinAmbitiousClimateScenarios

Note:HistoricaldatafromIEA.AllscenariosexceptthosefromEquinorexcludenature-basedsolutionssuchasafforestationandreforestation.

In2022,roughly42millionmetrictonsofCO2werecapturedbyCCUSinfrastructurearoundtheworld.Althoughthisaccountsforjust0.1percentofannualglobalCO2emissions,italsorepresentsaneartriplingofCCUSsince2010,acompoundaverageannualgrowthrate

(CAAGR)of8.7percent.UnderEvolvingPoliciesscenarios,comparableCAAGRsemerge

through2050,rangingfrom8.2percent(IEASTEPS)to12.5percent(bpNewMomentum).UnderAmbitiousClimatescenarios,however,CCUSdeploymentincreasesbymorethan

twoordersofmagnitudeby2050,growingby14-to16-fold,oraCAAGRof19to20percent.

Arethesegrowthratesachievable?Technicallyspeaking,theanswerisyes.CCUS

infrastructureandundergroundstoragereservoirsaremorethanadequatetohandlethesevolumesofCO215However,thefuturecostsofdeployingthesetechnologies,includingtorelativelynovelsectorssuchaselectricpowergeneration(mostCCUStodayisusedintheindustrialsector),16arenotwellunderstood.

Inaddition,CCUStechnologiesarecontroversialandmaybeunwelcomeinsomeregions,inlargepartbecausetheymaynotreduce,andinsomecasesmayexacerbate,emissionsofotherairpollutantsfrompointsources17Theyalsodonotreducewaterpollutionorotherconsequencesoffossilfuelextraction,transportation,refining,andcombustion.

ResourcesfortheFuture4

Astheglobaleconomybecomesmoreenergyefficient,worldprimaryenergydemand

growsslowlyordeclinesunderalmostallscenariosexaminedhere.Thistrendisseen

mostclearlyinAmbitiousClimatescenarios,whereaggregateenergydemanddeclines

byasmuchas33percent(EquinorBridges).Fallingenergydemandoccursprimarilyin

high-incomecountries,withcontinuedgrowthinenergyconsumptioninmanylow-incomenations.Somescenarios,suchastheIEA’sNZE,highlighthowexpandingaccesstomodernenergyservicesinlow-incomeregionscanbeconsistentwithdecliningglobalenergy

demandandachievinglong-termsustainabilitygoals.

Figure3.WorldPrimaryEnergyDemandGrowsModestlyorDeclinesUnderMostScenarios

Note:Projectionsareorderedfromhighesttolowestdemandforfossilfuels.HistoricaldatafromIEA.“Liquids”includesoilonlyforEnerdatascenarios.“Biomass”excludesbiofuels,whichareincludedin“Liquids.”OPECprojectionsarefor2045.“Other”includeswindandsolarforEquinorandOPEC.

Coaldemanddeclinesrelativeto2022ineveryscenarioexaminedhere,rangingfrom2

percent(EIA)to93percent(EquinorBridges)lowerby2050.Similarly,oildemandislowerattheendoftheprojectionperiodforallbutfourscenarios,whereitgrowsslowly.Liquidsdemand,whichincorporatesbiofuels,increasesby2050insixscenarios(EIA,EnerBase,

ExxonMobil,IEASTEPS,OPEC,andShellArchipelagos).Projectionsfornaturalgasdemandaremoremixed,withroughlyhalfshowinggrowthandhalfshowingreductions.Underall

AmbitiousClimatescenarios,globalgasdemandfallsconsiderably,rangingfromadropof59percent(bpNetZero)to78percent(EnerGreenandIEANZE)relativeto2022levels.

Windandsolargrowfasterthananyothersourcesinpercentagetermsunderallscenarios,butwithawiderange.Forexample,EIAprojectsglobalwindenergytoroughlytripleovertheprojectionperiod,themostbearishscenario.EvolvingPoliciesscenariossuchasIEA

STEPSshowwindgrowing5-fold,whilesolargrowsmorethan10-fold.UnderAmbitious

Climatescenarios,solarandwindtogetherrisefrom2percentoftheenergymixin2022toroughlyone-thirdormoreby2050.

GlobalEnergyOutlook2024:PeaksorPlateaus?5

Overthelast40years,thecarbonintensityoftheworld’sprimaryenergymixhas

remainedroughlyflat,decliningmodestlyfrom2010throughtoday.Inthedecades

ahead,carbonintensityisprojectedtocontinuethismodestdeclineunderReferenceandmostEvolvingPoliciesscenarios.Achievingambitiousclimategoals,however,willrequireanunprecedentedreductioninthecarbonintensityofenergy.

Figure4.AmbitiousClimateScenariosEnvisionUnprecedentedImprovementinCarbonIntensity

Note:HistoricaldatafromShell.NetCO2emissions(i.e.,inclusiveofnegativeemissions)perunitofprimaryenergydemandareshownhere.

From2010through2021,globalcarbonintensityofprimaryenergyfellbyaCAAGRof0.4percent.Thisdeclineacceleratesunderallscenarios,rangingfromalowof0.6percentonaverageannually(EIA)toahighof12.8percentormoreonaverageannuallyfrom2022to2050(EquinorBridgesandIEANZE).

Isthererecentprecedentforsuchrapidreductionsincarbonintensityatanationalorregionalscale?Unfortunately,theanswerisno.TheUnitedStates,SouthKorea,and

theUKrespectivelyreducedtheircarbonintensitiesbyanaverageof1.1,1.2,and1.3

percentannuallyfrom2010through2022.AndinSweden,carbonintensitydeclinedby1.9percentonaverageduringthisperiod.

Otheraffluentnationsexperiencedlessprogress,particularlyduetotheclosureof

nuclearpowerfacilities.Forexample,Germany’scarbonintensitydeclinedbyonly

0.2percentonaverageperyearfrom2010through2022,whileJapan’sincreasedby0.9percentannuallyonaverage.Thesefigureshighlightthescaleofthechallenge

facingglobalpolicymakersandpointtotheimportanceofretaininglow-carbonenergysourceswheretheycancontinueoperatingsafely.

ResourcesfortheFuture6

WorldleadersatCOP28agreedto“triplingrenewableenergycapacityglobally”to11,000gigawatts(GW)by203011,18Achievingthisgoalwouldrequireunprecedentedgrowthacrossmultipletechnologies,particularlywindandsolar.ThreeAmbitious

Climatescenarios(IEANZE,EnerGreen,andShellSky2050)achievethe2030goal,butthesescenariosarenotbasedonexistingorannouncedpolicies,highlightingtheneedforenhancedpolicyambitionifnationsaretoachievetheirCOP28renewableenergygoals.

Figure5.RenewableElectricityCapacityTriplesby2030UnderThreeScenarios

Note:HistoricaldatafromEIA.“Renewables”includeshydro,biomass,wind,solar,geothermal,andtidalenergy.ProjectionsaretakendirectlyfromEIAandIEA.Projectionsforother

organizationsareestimatedbasedonrenewableelectricitygenerationprojectionsfromeachorganization,convertedtocapacityassumingcapacityfactorsimputedfromtheIEAAPS.

In2010,renewableelectricitywasdominatedbyhydropower,whichaccounted

formorethan75percentofinstalledcapacityworldwide.Overthenext10years,

renewablecapacitymorethandoubled,growingby125percent,overwhelminglyledbywindandsolarphotovoltaic(PV),whichaccountedformorethan75percentofcapacityadditions,followedbyhydroat18percent.

From2020to2022,solarledafurtheraccelerationofrenewablesgrowth,which

increasedatanannualrateofmorethan10percent,or320GWperyear.Toreach11,000GWofrenewablecapacityby2030,annualcapacityadditionswouldneedtoaverageroughly800GWperyearfrom2022.Forperspective,in2022,globalwindcapacitywas832GWandsolarwas892GW,highlightingtheunprecedentedrateofgrowthneededtoachievetherenewableenergygoalagreeduponatCOP28.

GlobalEnergyOutlook2024:PeaksorPlateaus?7

AtCOP28,22nationscommittedtotriplingtheirnuclearenergycapacityby2050.Achieving

thisgoalwouldrequireafundamentalchangeinthetrajectoryofnuclearenergyfor

developednations,as12ofthe22experienceddecliningnuclearenergyproductionfrom2012through2022,while5currentlyproducenonuclearpower19Inrecentyears,nuclearenergy

growthhasbeenledbyChinaandIndia.AlthoughneitherofthesecountrieswaspartoftheannouncementatCOP28,theywerethetoptwonationsfornuclearpowerplantconstructionasofDecember2023.20Globally,nuclearcapacityisprojectedtogrowmodestlyundermostscenarios,and2022levelstripleby2050injusttwoscenarios,bothfromEnerdata.

Figure6.WorldNuclearPowerCapacityTriplesby2050UnderJustTwoScenarios

Note:HistoricaldatafromShell.CapacitydataaretakenfromoriginalinEIA,IEA,andShellandestimatedbasedonnuclearelectricitygenerationfrombp,Enerdata,Equinor,andExxonMobil,assumingplantsoperatedattheaverageglobalcapacityfactorin2020–22.

Projectionsforthegrowthofnuclearcapacityspanroughly800GW,nearlytwicethe

installedcapacityin2022.EvenacrossscenarioswithsimilarCO2emissionstrajectories,

projectionsvarywidely.F

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论