版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
GlobalEnergyOutlook2024:PeaksorPlateaus?
DanielRaimi,YuqiZhu,RichardG.Newell,andBrianC.Prest
Report24-06
April2024
AbouttheAuthors
DanielRaimiisafellowatResourcesfortheFuture(RFF)andalecturerattheGeraldR.FordSchoolofPublicPolicyattheUniversityofMichigan.Heworksonarangeof
energypolicyissueswithafocusontoolstoenableanequitableenergytransition.HehaspublishedinacademicjournalsincludingScience,ScienceAdvances,EnvironmentalScienceandTechnology,JournalofEconomicPerspectives,ReviewofEnvironmentalEconomicsandPolicy,EnergyResearchandSocialScience,andEnergyPolicy,in
popularoutletsincludingTheNewRepublic,Newsweek,Slate,andFortune,andquotedextensivelyinnationalmediaoutletssuchasCNN,NPR’sAllThingsConsidered,
NewYorkTimes,WallStreetJournal,andmanymore.Hehaspresentedhisresearchforpolicymakers,industry,andotherstakeholdersaroundtheUnitedStatesand
internationally,includingbeforetheUSSenateBudgetCommitteeandtheEnergyandMineralResourcesSubcommitteeoftheUSHouse’sNaturalResourcesCommittee.
In2017,hepublishedTheFrackingDebate(ColumbiaUniversityPress),abookthatcombinesstoriesfromhistravelstodozensofoil-andgas-producingregionswithadetailedexaminationofkeypolicyissues.
YuqiZhujoinedRFFasaseniorresearchassociatein2022afterreceivinghismaster’s
degreeinpublicpolicyfromtheHarvardKennedySchool.Priortograduateschool,he
workedincorporatedevelopmentatLibertyMedia,amediaandcommunicationsholdingcompanyinDenver.
RichardG.NewellisthepresidentandCEOofRFF,anindependentnonprofitresearch
institutionthatimprovesenvironmental,energy,andnaturalresourcedecisionsthroughimpartialeconomicresearchandpolicyengagement.Hehasheldseniorgovernment
appointmentsastheAdministratoroftheUSEnergyInformationAdministrationandastheSeniorEconomistforenergyandenvironmentonthePresident’sCouncilofEconomicAdvisers.Dr.NewellwaspreviouslytheGendellProfessorofEnergyandEnvironmentalEconomicsatDukeandDirectorofitsEnergyInitiativeandisnowadjunctprofessor.Hehaspublishedwidelyontheeconomicsofmarketsandpoliciesforclimatechange,the
cleanenergytransition,andtechnologyinnovation.HeisaboardmemberoradvisorattheNationalAcademyofSciencesClimateSecurityRoundtable,theEuro-MediterraneanCenteronClimateChange,theNationalPetroleumCouncil,andseveralotherinstitutionsandco-chairedaformativeNationalAcademiesstudyonthesocialcostofgreenhousegases.NewellholdsaPhDfromHarvardandanMPAfromPrinceton.
BrianC.PrestisaneconomistandfellowatRFFspecializingintheeconomicsofclimatechange,energyeconomics,andoilandgassupply.Prestuseseconomictheoryand
econometricstoimproveenergyandenvironmentalpoliciesbyassessingtheirimpactsonsociety.Hisrecentworkincludesimprovingthescientificbasisofthesocialcost
ofcarbonandeconomicmodelingofvariouspoliciesaroundoilandgassupply.His
researchhasbeenpublishedinpeer-reviewedjournalssuchasNature,theBrookings
PapersonEconomicActivity,theJournaloftheAssociationofEnvironmentaland
ResourceEconomists,andtheJournalofEnvironmentalEconomicsandManagement.
HisworkhasalsobeenfeaturedinpopularpressoutletsincludingtheWashingtonPost,theWallStreetJournal,theNewYorkTimes,Reuters,theAssociatedPress,andBarron’s.
ResourcesfortheFuturei
Acknowledgements
WethankStuIler,whoinitiallydevelopedtheplatformforharmonizingoutlooks.
WearealsogratefultoLauraCozziandDavideD’AmbrosioattheIEA,AprilRossatExxonMobil,ChristianMollardatEnerdata,AstridNåvikatEquinor,MichaelCohen
andJorgeBlazquezatbp,GeorgiosBoniasatShell,andtheEIAmacroeconomicsandemissionsteamforprovidingdataandrespondingtoquestionsinthepreparationofthisreport.RichardG.Newellconceivedoftheproject;DanielRaimiandYuqiZhuleddatacollectionandharmonization;andDanielRaimileddataanalysisanddraftingofthereport,withtheexceptionsofSections3.1(YuqiZhu)and3.2(BrianC.Prest).Allauthorsreviewedandapprovedofthefinaldraft.
AboutRFF
ResourcesfortheFuture(RFF)isanindependent,nonprofitresearchinstitutionin
Washington,DC.Itsmissionistoimproveenvironmental,energy,andnaturalresourcedecisionsthroughimpartialeconomicresearchandpolicyengagement.RFFis
committedtobeingthemostwidelytrustedsourceofresearchinsightsandpolicysolutionsleadingtoahealthyenvironmentandathrivingeconomy.
TheviewsexpressedherearethoseoftheindividualauthorsandmaydifferfromthoseofotherRFFexperts,itsofficers,oritsdirectors.
SharingOurWork
OurworkisavailableforsharingandadaptationunderanAttribution-
NonCommercial-NoDerivatives4.0International(CCBY-NC-ND4.0)license.Youcancopyandredistributeourmaterialinanymediumorformat;youmustgive
appropriatecredit,providealinktothelicense,andindicateifchangesweremade,andyoumaynotapplyadditionalrestrictions.Youmaydosoinanyreasonable
manner,butnotinanywaythatsuggeststhelicensorendorsesyouoryouruse.Youmaynotusethematerialforcommercialpurposes.Ifyouremix,transform,orbuilduponthematerial,youmaynotdistributethemodifiedmaterial.Formoreinformation,visit
/licenses/by-nc-nd/4.0/
.
GlobalEnergyOutlook2024:PeaksorPlateaus?ii
Highlights
Coal,oil,andnaturalgasconsumptionreachtheirhighestpointsbefore2030butremainhighthrough2050inmanyscenarios.Achievinginternationalclimatetargetswill
requireallthreefossilfuelstodeclinemuchmorequickly,resemblingapeak,notaplateau.
Althoughtheyarecontroversialforavarietyofreasons,carbondioxideremoval(CDR)technologiesaredeployedrapidlyandatscaleineveryscenariothatlimitsglobal
warmingto1.5°Cor2°Cby2100.Thissuggeststheneedforthedevelopmentofrobustmonitoring,reporting,andverificationstandards,alongwithadditionalmeasurestopreventCDRfromcreatingmajornewenvironmentalorsocialchallenges.
Projecteddemandforenergy-relatedmetalsandmineralsgrowsrapidly,particularlyunderAmbitiousClimate
scenarios,risingbyordersofmagnitudeforsomecriticalminerals.Suchgrowthraisesnewquestionsoversupplycosts,geopolitics,localenvironmentalimpacts,andmore.
AtCOP28intheUAE,22nationspledgedtotriplenuclearenergycapacityby2050.Achievingthisgoalatthegloballevelwouldrequireareturntogrowthratesnotseensincethe1980s.Since2010,globalnuclearenergyproductionhasdeclinedbynearly5percent,dueprimarilytoplant
closuresinEurope,Japan,andtheUnitedStates.
ProjectedenergydemandinChinahasbeenrevised
downwardsubstantiallyinrecentyears,reflectinga
decliningpopulationandmajoreconomicheadwinds.Coupledwithnewpoliciesconcerningairqualityandclimatechange,thesetrendsarecontributingtolowerprojectedcoaluseandcarbondioxideemissionsinthedecadesahead.
ResourcesfortheFutureiii
Contents
1.Introduction1
2.KeyFindings3
3.InFocus13
3.1.China’sEvolvingEnergyFutureagainstaForebodingEconomicOutlook13
3.2.EmergingTechnologiesforAchievingNetZero17
3.2.1.Hydrogen17
3.2.2.CarbonCapture,Use,andStorage(CCUS)andDirectAirCapture(DAC)19
3.2.3.BacktotheFuture(ofthePast)20
3.3.ANewEraofMining21
3.3.1.Cobalt22
3.3.2.Copper23
3.3.3.Lithium24
3.3.4.Nickel25
3.3.5.OtherMinerals26
4.DataandMethods27
4.1.Harmonization29
5.Statistics31
References40
GlobalEnergyOutlook2024:PeaksorPlateaus?iv
1.Introduction
Thefutureoftheglobalenergysystemisdeeplyuncertain,andthechoicesthataremadeinthecomingyearswillhaveenormousconsequencesforthefutureoftheclimateand,indeed,humancivilization.Tounderstandhowourenergysystemischanging,eachyearavarietyoforganizationsproducelong-termprojections
thatimagineawiderangeoffuturesbasedondivergentvisionsaboutpolicies,
technologies,prices,andgeopolitics.
Becausetheseprojectionsvarywidelyanddependheavilyontheirvariedassumptionsandmethodologies,theyaredifficulttocompareonanapples-to-applesbasis.Inthisreport,weapplyadetailedharmonizationprocesstocompare16scenariosacross
eightenergyoutlookspublishedin2023,aswellastwohistoricaldatasources.Takentogether,thesescenariosofferabroadscopeofpotentialchangestotheenergy
systemasenvisionedbysomeofitsmostknowledgeableorganizations.Table1liststhehistoricaldatasets,outlooks,andscenariosexaminedhere,andadditionaldetailisprovidedinSection4.
Table1.Datasets,Outlooks,andScenariosExaminedinThisReport
Source
Datasetoroutlook
Scenario(s)
Years
Grubler(2008)1
Historical
—
1800–1970
IEA(2022)2
Historical
—
1970–2021
bp(2023)3
EnergyOutlook2023
NewMomentum,AcceleratedTransition,NetZero
To2050
EIA(2023)4
InternationalEnergyOutlook2023
Reference
To2050
Enerdata(2023)5
EnerFuture2023
EnerBase,EnerBlue,EnerGreen
To2050
Equinor(2023)6
2023EnergyPerspectives
Walls,Bridges
To2050
ExxonMobil(2023)7
2023GlobalOutlook
Reference
To2050
IEA(2023)8
WorldEnergyOutlook2023
StatedPolicies(STEPS),AnnouncedPledges(APS),NetZeroEmissionsby2050(NZE)
To2050
OPEC(2023)9
WorldOilOutlook2023
Reference
To2045
Shell(2023)10
EnergySecurityScenarios
Archipelagos,Sky2050
To2100
GlobalEnergyOutlook2024:PeaksorPlateaus?1
AbriefdescriptionofourmethodologyisprovidedinSection4,withselectindicatorsinSection5.Forthefullmethodologyandinteractivegraphingtools,visit
/geo
.
Throughoutthefiguresincludedinthisreport,weuseaconsistentlabelingsystemthatdistinguishesamongthedifferenttypesofscenarios(seeTable2):
•ForReferencescenarios,whichassumelimitedornonewpolicies,weuse
long-dashedlines;thissetcomprisesReferencescenariosfromtheUSEnergyInformationAdministration(EIA),Enerdata’sEnerBase,ExxonMobil,andOPEC.
•ForEvolvingPoliciesscenarios,whichassumethatpoliciesandtechnologies
developaccordingtorecenttrendsortheexpertviewsoftheteamproducingtheoutlook,weusesolidlines;thissetcomprisesbpNewMomentumandIEASTEPS.Althoughtheydonotfollowthesamesetsofassumptions,wealsoincludeEquinorWallsandShellArchipelagosbecausetheirCO2emissionstrajectoriesaresimilartothoseinotherEvolvingPoliciesscenarios.Inaddition,weincludeEnerdata’s
EnerBlueandIEA’sAPS,whichassumegovernmentsimplementtheirnationallydeterminedcontributions(NDCs)undertheParisAgreement;forthese,weusedot-dashlines.
•AmbitiousClimatescenariosarenotdesignedaroundpoliciesbutinsteadare
structuredtoachievespecificclimatetargets.Forthosethatlimitglobalmean
temperaturerisetobelow2°Cby2100(bp’sAcceleratedTransitionandEnerdata’sEnerGreen),weuseshort-dashedlines.Forscenariosdesignedtolimitglobal
meantemperatureriseto1.5°Cby2100ornet-zeroemissionsby2050(bpNetZero,EquinorBridges,IEANZE,andShell’sSky2050),weusedottedlines.
Table2.LegendforDifferentScenarioTypes
Reference
Evolvingpolicies
Ambitiousclimate
EIA
bpNewMomentum
bpAccel.Transition(2°C)
EnerdataEnerbase
IEASteps
EnerdataEnerGreen(2°C)
ExxonMobil
EquinorWalls
bpNetZero(1.5°C)
OPEC
ShellArchipelagos
EquinorBridges(1.5°C)
EnerdataEnerBlue
IEANZE(1.5°C)
IEAAPS
ShellSky2050(1.5°C)
FiguresandtablesinthisreportsometimesrefertoregionalgroupingsofEastandWest.Table3definesthoseregionalgroupings.
Table3.RegionalDefinitionsfor“East”and“West”
“East”
Africa,Asia-Pacific,MiddleEast
“West”
Americas,Europe,Eurasia
ResourcesfortheFuture2
2.KeyFindings
Atthe28thConferenceoftheParties(COP28)totheUnitedNationsFramework
ConventiononClimateChangeheldinDubai,worldleadersagreedto“transitioningawayfromfossilfuelsintheenergysystem.”11Someadvocates,governments,and
civilsocietyfigureshavecritiquedthisagreementandarguedinsteadforthetotal
phaseoutoffossilfuelstoachievelong-termclimategoals.However,allscenarios
examinedhere,includingthoseconsistentwithlimitingwarmingto1.5°Cby2100,showsubstantialglobalfossilfuelconsumptionthroughatleast2050,suggestingthata
phaseoutisnotaprerequisitetoachievinginternationalclimategoals.
Figure1.GlobalFossilFuelDemandPeaksandDeclinesRapidlyinAmbitiousClimateScenarios
Note:Includesprimaryenergydemandforcoal,oil,andnaturalgas.HistoricaldatafromShell.
AswehavenotedinpreviousGlobalEnergyOutlooks,12worldprimaryenergydemandhasexperiencedaseriesofenergyadditions,notenergytransitions,withnewer
technologiessuchasnuclear,wind,andsolarbuildingontopofincumbentsourcessuchasbiomass,coal,oil,andnaturalgas.Toachieveinternationalclimategoalsandlimitwarmingto1.5°Cor2°Cby2100,atrueenergytransitionisneeded.Butdoes
achievingsuchgoalsrequirephasingoutfossilfuelsentirely?
Thescenariosweanalyzeinthisreportsuggestthattheanswerisno.Likemost
scenariospublishedinrecentyearsbytheIntergovernmentalPanelonClimateChange(IPCC),13,14fossilfuelusedeclinesbutremainssubstantialthroughmidcenturyand
beyond,evenunderscenariosthatlimitwarmingto1.5°C.SeveralAmbitiousClimate
scenariosshowglobalfossilfueluseofroughly100quadrillionBritishthermalunits
(QBtu)in2050,slightlyhigherthantotalUSprimaryenergydemand.Thewiderangeofprojectedfossilfueldemandalsohighlightsthedeepuncertaintyofthefutureoftheworldenergysystem,with2050scenariosspanning487QBtu,roughlyequivalentto
globalconsumptionoffossilfuelsin2022.
GlobalEnergyOutlook2024:PeaksorPlateaus?3
Iffossilfuelsarenotphasedoutoftheenergysystem,limitingwarmingtointernational
climatetargetsimpliesasubstantialscale-upofcarbonremovaltechnologies,including
directaircapture(DAC),bioenergywithcarboncaptureandstorage(CCS),andnature-
basedsolutions,allofwhichwillrequirerobustmonitoring,reporting,andverification.
Althoughthesetechnologiesarecontroversialforavarietyofreasons,theirapplicationatscaleisanessentialtoolinreachingnet-zeroemissionsineveryAmbitiousClimatescenarioexaminedhere.
Figure2.WorldCarbonCapture,Use,andStorageRisesSharplyinAmbitiousClimateScenarios
Note:HistoricaldatafromIEA.AllscenariosexceptthosefromEquinorexcludenature-basedsolutionssuchasafforestationandreforestation.
In2022,roughly42millionmetrictonsofCO2werecapturedbyCCUSinfrastructurearoundtheworld.Althoughthisaccountsforjust0.1percentofannualglobalCO2emissions,italsorepresentsaneartriplingofCCUSsince2010,acompoundaverageannualgrowthrate
(CAAGR)of8.7percent.UnderEvolvingPoliciesscenarios,comparableCAAGRsemerge
through2050,rangingfrom8.2percent(IEASTEPS)to12.5percent(bpNewMomentum).UnderAmbitiousClimatescenarios,however,CCUSdeploymentincreasesbymorethan
twoordersofmagnitudeby2050,growingby14-to16-fold,oraCAAGRof19to20percent.
Arethesegrowthratesachievable?Technicallyspeaking,theanswerisyes.CCUS
infrastructureandundergroundstoragereservoirsaremorethanadequatetohandlethesevolumesofCO215However,thefuturecostsofdeployingthesetechnologies,includingtorelativelynovelsectorssuchaselectricpowergeneration(mostCCUStodayisusedintheindustrialsector),16arenotwellunderstood.
Inaddition,CCUStechnologiesarecontroversialandmaybeunwelcomeinsomeregions,inlargepartbecausetheymaynotreduce,andinsomecasesmayexacerbate,emissionsofotherairpollutantsfrompointsources17Theyalsodonotreducewaterpollutionorotherconsequencesoffossilfuelextraction,transportation,refining,andcombustion.
ResourcesfortheFuture4
Astheglobaleconomybecomesmoreenergyefficient,worldprimaryenergydemand
growsslowlyordeclinesunderalmostallscenariosexaminedhere.Thistrendisseen
mostclearlyinAmbitiousClimatescenarios,whereaggregateenergydemanddeclines
byasmuchas33percent(EquinorBridges).Fallingenergydemandoccursprimarilyin
high-incomecountries,withcontinuedgrowthinenergyconsumptioninmanylow-incomenations.Somescenarios,suchastheIEA’sNZE,highlighthowexpandingaccesstomodernenergyservicesinlow-incomeregionscanbeconsistentwithdecliningglobalenergy
demandandachievinglong-termsustainabilitygoals.
Figure3.WorldPrimaryEnergyDemandGrowsModestlyorDeclinesUnderMostScenarios
Note:Projectionsareorderedfromhighesttolowestdemandforfossilfuels.HistoricaldatafromIEA.“Liquids”includesoilonlyforEnerdatascenarios.“Biomass”excludesbiofuels,whichareincludedin“Liquids.”OPECprojectionsarefor2045.“Other”includeswindandsolarforEquinorandOPEC.
Coaldemanddeclinesrelativeto2022ineveryscenarioexaminedhere,rangingfrom2
percent(EIA)to93percent(EquinorBridges)lowerby2050.Similarly,oildemandislowerattheendoftheprojectionperiodforallbutfourscenarios,whereitgrowsslowly.Liquidsdemand,whichincorporatesbiofuels,increasesby2050insixscenarios(EIA,EnerBase,
ExxonMobil,IEASTEPS,OPEC,andShellArchipelagos).Projectionsfornaturalgasdemandaremoremixed,withroughlyhalfshowinggrowthandhalfshowingreductions.Underall
AmbitiousClimatescenarios,globalgasdemandfallsconsiderably,rangingfromadropof59percent(bpNetZero)to78percent(EnerGreenandIEANZE)relativeto2022levels.
Windandsolargrowfasterthananyothersourcesinpercentagetermsunderallscenarios,butwithawiderange.Forexample,EIAprojectsglobalwindenergytoroughlytripleovertheprojectionperiod,themostbearishscenario.EvolvingPoliciesscenariossuchasIEA
STEPSshowwindgrowing5-fold,whilesolargrowsmorethan10-fold.UnderAmbitious
Climatescenarios,solarandwindtogetherrisefrom2percentoftheenergymixin2022toroughlyone-thirdormoreby2050.
GlobalEnergyOutlook2024:PeaksorPlateaus?5
Overthelast40years,thecarbonintensityoftheworld’sprimaryenergymixhas
remainedroughlyflat,decliningmodestlyfrom2010throughtoday.Inthedecades
ahead,carbonintensityisprojectedtocontinuethismodestdeclineunderReferenceandmostEvolvingPoliciesscenarios.Achievingambitiousclimategoals,however,willrequireanunprecedentedreductioninthecarbonintensityofenergy.
Figure4.AmbitiousClimateScenariosEnvisionUnprecedentedImprovementinCarbonIntensity
Note:HistoricaldatafromShell.NetCO2emissions(i.e.,inclusiveofnegativeemissions)perunitofprimaryenergydemandareshownhere.
From2010through2021,globalcarbonintensityofprimaryenergyfellbyaCAAGRof0.4percent.Thisdeclineacceleratesunderallscenarios,rangingfromalowof0.6percentonaverageannually(EIA)toahighof12.8percentormoreonaverageannuallyfrom2022to2050(EquinorBridgesandIEANZE).
Isthererecentprecedentforsuchrapidreductionsincarbonintensityatanationalorregionalscale?Unfortunately,theanswerisno.TheUnitedStates,SouthKorea,and
theUKrespectivelyreducedtheircarbonintensitiesbyanaverageof1.1,1.2,and1.3
percentannuallyfrom2010through2022.AndinSweden,carbonintensitydeclinedby1.9percentonaverageduringthisperiod.
Otheraffluentnationsexperiencedlessprogress,particularlyduetotheclosureof
nuclearpowerfacilities.Forexample,Germany’scarbonintensitydeclinedbyonly
0.2percentonaverageperyearfrom2010through2022,whileJapan’sincreasedby0.9percentannuallyonaverage.Thesefigureshighlightthescaleofthechallenge
facingglobalpolicymakersandpointtotheimportanceofretaininglow-carbonenergysourceswheretheycancontinueoperatingsafely.
ResourcesfortheFuture6
WorldleadersatCOP28agreedto“triplingrenewableenergycapacityglobally”to11,000gigawatts(GW)by203011,18Achievingthisgoalwouldrequireunprecedentedgrowthacrossmultipletechnologies,particularlywindandsolar.ThreeAmbitious
Climatescenarios(IEANZE,EnerGreen,andShellSky2050)achievethe2030goal,butthesescenariosarenotbasedonexistingorannouncedpolicies,highlightingtheneedforenhancedpolicyambitionifnationsaretoachievetheirCOP28renewableenergygoals.
Figure5.RenewableElectricityCapacityTriplesby2030UnderThreeScenarios
Note:HistoricaldatafromEIA.“Renewables”includeshydro,biomass,wind,solar,geothermal,andtidalenergy.ProjectionsaretakendirectlyfromEIAandIEA.Projectionsforother
organizationsareestimatedbasedonrenewableelectricitygenerationprojectionsfromeachorganization,convertedtocapacityassumingcapacityfactorsimputedfromtheIEAAPS.
In2010,renewableelectricitywasdominatedbyhydropower,whichaccounted
formorethan75percentofinstalledcapacityworldwide.Overthenext10years,
renewablecapacitymorethandoubled,growingby125percent,overwhelminglyledbywindandsolarphotovoltaic(PV),whichaccountedformorethan75percentofcapacityadditions,followedbyhydroat18percent.
From2020to2022,solarledafurtheraccelerationofrenewablesgrowth,which
increasedatanannualrateofmorethan10percent,or320GWperyear.Toreach11,000GWofrenewablecapacityby2030,annualcapacityadditionswouldneedtoaverageroughly800GWperyearfrom2022.Forperspective,in2022,globalwindcapacitywas832GWandsolarwas892GW,highlightingtheunprecedentedrateofgrowthneededtoachievetherenewableenergygoalagreeduponatCOP28.
GlobalEnergyOutlook2024:PeaksorPlateaus?7
AtCOP28,22nationscommittedtotriplingtheirnuclearenergycapacityby2050.Achieving
thisgoalwouldrequireafundamentalchangeinthetrajectoryofnuclearenergyfor
developednations,as12ofthe22experienceddecliningnuclearenergyproductionfrom2012through2022,while5currentlyproducenonuclearpower19Inrecentyears,nuclearenergy
growthhasbeenledbyChinaandIndia.AlthoughneitherofthesecountrieswaspartoftheannouncementatCOP28,theywerethetoptwonationsfornuclearpowerplantconstructionasofDecember2023.20Globally,nuclearcapacityisprojectedtogrowmodestlyundermostscenarios,and2022levelstripleby2050injusttwoscenarios,bothfromEnerdata.
Figure6.WorldNuclearPowerCapacityTriplesby2050UnderJustTwoScenarios
Note:HistoricaldatafromShell.CapacitydataaretakenfromoriginalinEIA,IEA,andShellandestimatedbasedonnuclearelectricitygenerationfrombp,Enerdata,Equinor,andExxonMobil,assumingplantsoperatedattheaverageglobalcapacityfactorin2020–22.
Projectionsforthegrowthofnuclearcapacityspanroughly800GW,nearlytwicethe
installedcapacityin2022.EvenacrossscenarioswithsimilarCO2emissionstrajectories,
projectionsvarywidely.F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国炉管吊钩行业投资前景及策略咨询研究报告
- 2024至2030年中国水力电动控制阀行业投资前景及策略咨询研究报告
- 2024年袋型空气隔尘网项目可行性研究报告
- 2024年拉线钳子项目可行性研究报告
- 皮革制品运输合同三篇
- 矿山开采安全事故应急救援预案
- 2024年袋装腹膜透析液项目立项申请报告范稿
- 2024年核辐射剂量防护仪器设备项目提案报告
- 2024年美容美体项目立项申请报告
- 物业管理服务合同的履约保障措施
- 三方代付工程款协议书范本2024年
- 【道法】爱护身体 课件-2024-2025学年统编版道德与法治七年级上册
- 第二次月考测评卷(5-6单元)(试题)-2024-2025学年六年级数学上册人教版
- 医学课件抗痉挛体位摆放
- 2024年统编版七年级上册道德与法治 第三单元 珍爱我们的生命 第八课 生命可贵 第2课时 敬畏生命 教学课件
- IATF16949组织环境因素识别表
- 《积极心理学(第3版)》 课件 第11章 宽容、篇终 积极心理学的应用与展望
- 职业素质养成(吉林交通职业技术学院)智慧树知到答案2024年吉林交通职业技术学院
- 5.5《方程的意义》(课件)-2024-2025学年人教版数学五年级上册
- 2024年秋人教版七年级上册数学全册教学课件(新教材)
- 运用PDCA管理方法,推进三甲复审工作课件
评论
0/150
提交评论