内蒙古呼伦贝尔市海拉尔区第九中学2024年八年级数学第二学期期末预测试题含解析_第1页
内蒙古呼伦贝尔市海拉尔区第九中学2024年八年级数学第二学期期末预测试题含解析_第2页
内蒙古呼伦贝尔市海拉尔区第九中学2024年八年级数学第二学期期末预测试题含解析_第3页
内蒙古呼伦贝尔市海拉尔区第九中学2024年八年级数学第二学期期末预测试题含解析_第4页
内蒙古呼伦贝尔市海拉尔区第九中学2024年八年级数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古呼伦贝尔市海拉尔区第九中学2024年八年级数学第二学期期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知三角形的三边为2、3、4,该三角形的面积为()A. B. C. D.2.下列各式中,一定是二次根式的是()A. B. C. D.3.△ABC中,AB=20,AC=13,高AD=12,则△ABC的周长是()A.54 B.44 C.54或44 D.54或334.若a+1有意义,则()A.a≤ B.a<﹣1 C.a≥﹣1 D.a>﹣25.为了解某公司员工的年工资情况,小明随机调查了10位员工,其年工资如下单位:万元:4,4,4,5,6,6,7,7,9,则下列统计量中,能合理反映该公司员工年工资中等水平的是A.平均数 B.中位数 C.众数 D.方差6.甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2如下表所示:甲乙丙丁平均数(cm)561560561560方差s23.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁7.为了参加我市组织的“我爱家乡美”系列活动,某校准备从九年级四个班中选出一个班的7名学生组建舞蹈队,要求各班选出的学生身高较为整齐,且平均身高约为1.6m.根据各班选出的学生,测量其身高,计算得到的数据如右表所示,学校应选择()学生平均身高(单位:m)标准差九(1)班1.570.3九(2)班1.570.7九(3)班1.60.3九(4)班1.60.7A.九(1)班 B.九(2)班 C.九(3)班 D.九(4)班8.在函数的图象上的点是()A.(-2,12) B.(2,-12) C.(-4,-6) D.(4,-6)9.三角形的三边长分别为①5,12,13;②9,40,41;③8,15,17;④13,84,85,其中能够构成直角三角形的有()A.1个 B.2个 C.3个 D.4个10.如图,点A在函数y=(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为()A.2 B.2 C.2+4 D.2+4二、填空题(每小题3分,共24分)11.菱形ABCD的对角线cm,,则其面积等于______.12.计算:__________.13.已知y+2和x成正比例,当x=2时,y=4,则y与x的函数关系式是______________.14.约分___________.15.直线l与直线y=3﹣2x平行,且在y轴上的截距是﹣5,那么直线l的表达式是_____.16.函数y=x–1的自变量x的取值范围是.17.如图,等腰Rt△ABC中,∠BAC=90°,AB=AC=10,等腰直角三角形ADE绕着点A旋转,∠DAE=90°,AD=AE=6,连接BD、CD、CE,点M、P、N分别为DE、DC、BC的中点,连接MP、PN、MN,则△PMN的面积最大值为_____.18.甲、乙两人面试和笔试的成绩如下表所示:候选人甲乙测试成绩(百分制)面试成绩8692笔试成绩9083某公司认为,招聘公关人员,面试成绩应该比笔试成绩重要,如果面试和笔试的权重分别是6和4,根据两人的平均成绩,这个公司将录取________。三、解答题(共66分)19.(10分)北京到济南的距离约为500km,一辆高铁和一辆特快列车都从北京去济南,高铁比特快列车晚出发3小时,最后两车同时到达济南,已知高铁的速度是特快列车速度的倍求高铁和特快列车的速度各是多少?列方程解答20.(6分)在ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.①求证:BE=BF;②请判断△AGC的形状,并说明理由.(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG,判断△AGC的形状.(直接写出结论不必证明)21.(6分)晨光文具店的某种毛笔每支售价30元,书法纸每本售价10元.为促销制定了两种优惠方案:甲方案,买一支毛笔就送一本书法纸;乙方案,按购买的总金额打8折.某校欲为书法小组购买这种毛笔10支,书法纸x(x≥10)本.(1)求甲方案实际付款金额元与x的函数关系式和乙方案实际付款金额元与x的函数关系式;(2)试通过计算为该校提供一种节约费用的购买方案.22.(8分)如图,△ABC中,D是BC上的一点.若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.23.(8分)已知一次函数的图象如图所示,(1)求的值;(2)在同一坐标系内画出函数的图象;(3)利用(2)中你所面的图象,写出时,的取值范围.24.(8分)如图,一次函数y=2x+4的图象分别与x轴,y轴教育点A、点B、点C为x轴一动点。(1)求A,B两点的坐标;(2)当ΔABC的面积为6时,求点C的坐标;(3)平面内是否存在一点D,使四边形ACDB使菱形,若存在,请直接写出点D的坐标;若不存在,请说明理由。25.(10分)解下列方程(1)(2)26.(10分)已知一次函数y=kx+b的图象经过点(3,-3),且与直线y=4x-3的交点在x轴上.(1)求这个一次函数的解析式.(2)此函数的图象经过哪几个象限?(3)求此函数的图象与坐标轴围成的三角形的面积.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

如图所示:过点B作BD⊥AC于点D,利用勾股定理得出BD的长,进而利用三角形面积求法得出答案.【详解】如图所示:过点B作BD⊥AC于点D,

设BD=x,CD=y,

则AD=4-y,在Rt△BDC中,x2+y2=32,

在Rt△ABD中,x2+(4-y)2=22,

故9+16-8y=4,解得:y=,

∴x2+()2=9,解得:x=故三角形的面积为:故选:D.【点睛】本题考查勾股定理的应用,根据题意得出三角形的高的值是解题关键.2、C【解析】

根据二次根式的定义逐个判断即可.【详解】解:A、不是二次根式,故本选项不符合题意;B、不是二次根式,故本选项不符合题意;C、是二次根式,故本选项符合题意;D、当x<0时不是二次根式,故本选项不符合题意;故选:C.【点睛】本题考查了二次根式的定义,熟记二次根式的定义是解此题的关键,注意:形如(a≥0)的形式,叫二次根式.3、C【解析】

根据题意画出示意图进行分析判断,然后根据勾股定理计算出底边BC的长,最后求和即可.【详解】(1)在直角三角形ACD中,有在直角三角形ADB中,有则CB=CD+DB=5+16=21所以三角形的面积为CB+AC+AB=21+13+20=54.(2)在直角三角形ACD中,有在直角三角形ADB中,有则CB=DB-CD=16-5=11所以三角形的面积为CB+AC+AB=11+13+20=44.故答案为:D.【点睛】本题考查了勾股定理的应用,解题关键在于以高为突破点把三角形分为高在三角形内部和外部的两种情况.4、C【解析】

直接利用二次根式的定义计算得出答案.【详解】若a+1有意义,则a+1≥0,解得:a≥﹣1.故选:C.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.5、B【解析】

根据题意,结合员工工资情况,从统计量的角度分析可得答案.【详解】根据题意,了解这家公司的员工的工资的中等水平,结合员工情况表,即要全面的了解大多数员工的工资水平,故最应该关注的数据的中位数,故选:B.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.6、A【解析】试题分析:根据方差和平均数的意义找出平均数大且方差小的运动员即可.解:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,∴S甲2=S乙2<S丙2<S丁2,∴发挥稳定的运动员应从甲和乙中选拔,∵甲的平均数是561,乙的平均数是560,∴成绩好的应是甲,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;故选A.【点评】本题考查了方差和平均数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7、C【解析】根据标准差的意义,标准差越小数据越稳定,由于选的是学生身高较为整齐的,故要选取标准差小的,应从九(1)和九(3)里面选,再根据平均身高约为1.6m可知只有九(3)符合要求,故选C.8、C【解析】

根据横坐标与纵坐标的乘积为24即可判断.【详解】解:∵函数的图象上的点的横坐标与纵坐标的乘积为24,又∵-2×12=-24,2×(-12)=-24,-4×(-6)=24,4×(-6)=-24,∴(-4,-6)在的图象上,故选:C.【点睛】本题考查反比例函数图象上的点的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9、D【解析】

试题解析:①、∵52+122=169=132,∴能构成直角三角形,故本小题正确;②、92+402=1681=412=169,∴能构成直角三角形,故本小题正确;③、82+152=289=172,∴能构成直角三角形,故本小题正确;④、∵132+842=852,∴能构成直角三角形,故本小题正确.故选D.10、D【解析】

由点A在反比例函数的图象上,设出点A的坐标,结合勾股定理可以表现出OA2=AB2+OB2,再根据反比例函数图象上点的坐标特征可得出AB•OB的值,根据配方法求出(AB+OB)2,由此即可得出AB+OB的值,结合三角形的周长公式即可得出结论.【详解】解:∵点A在函数y=(x>0)的图象上,

∴设点A的坐标为(n,)(n>0).

在Rt△ABO中,∠ABO=90°,OA=1,

∴OA2=AB2+OB2,

又∵AB•OB=•n=1,

∴(AB+OB)2=AB2+OB2+2AB•OB=12+2×1=21,

∴AB+OB=2,或AB+OB=-2(舍去).

∴C△ABO=AB+OB+OA=2+1.

故答案为2+1.故选D.【点睛】本题考查了反比例函数图象上点的坐标特征、完全平方公式以及三角形的周长,解题的关键是求出AB+OB的值.本题属于基础题,难度不大,解决该题型题目时,巧妙的利用完全平方公式直接求出两直角边之和是关键.二、填空题(每小题3分,共24分)11、【解析】

根据菱形的性质,菱形的面积等于两条对角线乘积的一半,代入数值计算即可。【详解】解:菱形ABCD的面积===【点睛】本题考查了菱形的性质:菱形的面积等于两条对角线乘积的一半。12、【解析】

先把每个二次根式化简,然后合并同类二次根式即可。【详解】解:原式=2-=【点睛】本题考查了二次根式的化简和运算,熟练掌握计算法则是关键。13、y=3x-1【解析】解:设函数解析式为y+1=kx,∴1k=4+1,解得:k=3,∴y+1=3x,即y=3x-1.14、【解析】

根据分式的性质,分子分母同时扩大或缩小相同倍数时分式的值不变即可解题.【详解】=,(分子分母同时除以6abc).【点睛】本题考查了分式的变形和化简,属于简单题,熟悉分式的性质是解题关键.15、y=﹣2x﹣1【解析】

因为平行,所以得到两个函数的k值相同,再根据截距是-1,可得b=-1,即可求解.【详解】∵直线l与直线y=3﹣2x平行,∴设直线l的解析式为:y=﹣2x+b,∵在y轴上的截距是﹣1,∴b=﹣1,∴y=﹣2x﹣1,∴直线l的表达式为:y=﹣2x﹣1.故答案为:y=﹣2x﹣1.【点睛】该题主要考查了一次函数图像平移的问题,16、x≥1【解析】试题分析:根据二次根式有意义的条件是被开方数大于等于1,可知x≥1.考点:二次根式有意义17、31【解析】

由题意可证△ADB≌△EAC,可得BD=CE,∠ABD=∠ACE,由三角形中位线定理可证△MPN是等腰直角三角形,则S△PMN=PN1=BD1.可得BD最大时,△PMN的面积最大,由等腰直角三角形ADE绕着点A旋转,可得D是以A为圆心,AD=6为半径的圆上一点,可求BD最大值,即可求△PMN的面积最大值.【详解】∵△ABC,△ADE是等腰直角三角形,∴AD=AE,AB=AC,∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠CAE且AB=AC,AD=AE,∴△ADB≌△AEC,∴DB=EC,∠ABD=∠ACE.∵M,N,P分别是DE,DC,BC的中点,∴MP∥EC,MP=EC,NP=DB,NP∥BD,∴MP=NP,∠DPM=∠DCE,∠PNC=∠DBC.设∠ACE=x°,∠ACD=y°,∴∠ABD=x°,∠DBC=45°﹣x°=∠PNC,∠DCB=45°﹣y°,∴∠DPM=x°+y°,∠DPN=∠DCB+∠PNC=∠DCB+∠DBC=45°﹣y°+45°﹣x°=90°﹣x°﹣y°,∴∠MPN=90°且PN=PM,∴△PMN是等腰直角三角形,∴S△PMN=PN1=BD1,∴当BD最大时,△PMN的面积最大.∵D是以A点为圆心,AD=6为半径的圆上一点,∴A,B,D共线且D在BA的延长线时,BD最大.此时BD=AB+AD=16,∴△PMN的面积最大值为31.故答案为31.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,三角形的中位线定理,解题的关键是灵活运用所学知识解决问题.18、乙【解析】

根据题意先算出甲、乙两位候选人的加权平均数,再进行比较,即可得出答案.【详解】甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),因为乙的平均分数最高,所以乙将被录取.故答案为乙.【点睛】此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.三、解答题(共66分)19、特快列车的速度为100千米时,高铁的速度为250千米时.

【解析】

设特快列车的速度为x千米时,则高铁的速度为千米时,根据时间路程速度结合高铁比特快列车少用3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】设特快列车的速度为x千米时,则高铁的速度为千米时,根据题意得:,解得:,经检验,是原分式方程的解,.答:特快列车的速度为100千米时,高铁的速度为250千米时.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20、(1)①证明见解析;②△AGC是等腰直角三角形.证明见解析;(2)△AGC是等边三角形.【解析】

(1)①先判定四边形ABCD是矩形,再根据矩形的性质可得∠ABC=90°,AB∥DC,AD∥BC,然后根据平行线的性质求出∠F=∠FDC,∠BEF=∠ADF,再根据DF是∠ADC的平分线,利用角平分线的定义得到∠ADF=∠FDC,从而得到∠F=∠BEF,然后根据等角对等边的性质即可证明;

②连接BG,根据等腰直角三角形的性质可得∠F=∠BEF=45°,再根据等腰三角形三线合一的性质求出BG=FG,∠F=∠CBG=45°,然后利用“边角边”证明△AFG和△CBG全等,根据全等三角形对应边相等可得AG=CG,再求出∠GAC+∠ACG=90°,然后求出∠AGC=90°,然后根据等腰直角三角形的定义判断即可;

(2)连接BG,根据旋转的性质可得△BFG是等边三角形,再根据角平分线的定义以及平行线的性质求出AF=AD,平行四边形的对角相等求出∠ABC=∠ADC=60°,然后求出∠CBG=60°,从而得到∠AFG=∠CBG,然后利用“边角边”证明△AFG和△CBG全等,根据全等三角形对应边相等可得AG=CG,全等三角形对应角相等可得∠FAG=∠BCG,然后求出∠GAC+∠ACG=120°,再求出∠AGC=60°,然后根据等边三角形的判定方法判定即可.【详解】(1)证明:①∵四边形ABCD是平行四边形,∠ADC=90°,∴四边形ABCD是矩形,∴∠ABC=90°,AB∥DC,AD∥BC,

∴∠F=∠FDC,∠BEF=∠ADF,

∵DF是∠ADC的平分线,∴∠ADF=∠FDC,∴∠F=∠BEF,

∴BF=BE;

②△AGC是等腰直角三角形.

理由如下:连接BG,

由①知,BF=BE,∠FBC=90°,∴∠F=∠BEF=45°,

∵G是EF的中点,∴BG=FG,∠F=∠CBG=45°,

∵∠FAD=90°,∴AF=AD,又∵AD=BC,∴AF=BC,

在△AFG和△CBG中,∴△AFG≌△CBG,

∴AG=CG,∠FAG=∠BCG,

又∵∠FAG+∠GAC+∠ACB=90°,∴∠BCG+∠GAC+∠ACB=90°,即∠GAC+∠ACG=90°,∴∠AGC=90°,∴△AGC是等腰直角三角形;(2)△AGC是等边三角形.证明:连接BG,∵FB绕点F顺时针旋转60°至FG,

∴△BFG是等边三角形,

∴FG=BG,∠FBG=60°,

又∵四边形ABCD是平行四边形,∠ADC=60°,

∴∠ABC=∠ADC=60°

∴∠CBG=180°-∠FBG-∠ABC=180°-60°-60°=60°,

∴∠AFG=∠CBG,

∵DF是∠ADC的平分线,

∴∠ADF=∠FDC,

∵AB∥DC,

∴∠AFD=∠FDC,

∴∠AFD=∠ADF,

∴AF=AD,

在△AFG和△CBG中,,∴△AFG≌△CBG(SAS),

∴AG=CG,∠FAG=∠BCG,

在△ABC中,∠GAC+∠ACG=∠ACB+∠BCG+∠GAC=∠ACB+∠BAG+∠GAC=∠ACB+∠BAC=180°-60°=120°,

∴∠AGC=180°-(∠GAC+∠ACG)=180°-120°=60°,

∴△AGC是等边三角形.【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质,难度较大,作辅助线构造全等三角形是解题的关键.21、(1)y甲=10x+200(x≥10);;(2)见解析.【解析】

(1)甲方案实际付款=10支毛笔的价钱+10本以外练习本的总价钱,把相关数值代入即可求解;乙方案实际付款=(10支毛笔的总价钱+练习本的总价钱)×0.8,把相关数值代入即可求解;

(2)把①②得到的式子比较大小列出式子计算即可.【详解】解:(1)①=30×10+10(x-10)=10x+200(x≥10);

②=(30×10+10x)×0.8=8x+240;

(2)①∵10x+200>8x+240,

解得:x>20;∴当练习本超过20本时,选择乙方案;

②∵10x+200=8x+240,

解得:x=20;∴当练习本为20本时,两种方案价钱一样;

③∵10x+200<8x+240,

解得:x<20;∴当练习本少于20本时,选择甲方案.

答:当练习本超过20本时,选择乙方案;当练习本为20本时,两种方案价钱一样;当练习本少于20本时,选择甲方案.【点睛】本题考查了一次函数的应用,得到每种方案的等量关系是解决本题的关键;找到节约费用的方案,应分情况进行探讨.22、84【解析】

根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.【详解】解:在△ABD中,∵BD2+AD2=62+82=100=AB2,∴△ABD是直角三角形,∴△ADC也是直角三角形∴DC2+AD2=AC2,即DC2=AC2-AD2=172-82=225,∴DC=15.∴BC=BD+DC=6+15=21,∴S△ABC==84.【点睛】此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,解答此题的关键是利用勾股定理的逆定理求证△ABD是直角三角形.23、(1);(2)详见解析;(3)【解析】

(1)由图像可知A,B点的坐标,将点坐标代入一次函数表达式即可确定的值;(2)取直线与x轴,y轴的交点坐标,描点,连线即可;(3)时,的取值范围即直线在直线上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论