江苏省南京市第十八中学2024年数学八年级下册期末监测模拟试题含解析_第1页
江苏省南京市第十八中学2024年数学八年级下册期末监测模拟试题含解析_第2页
江苏省南京市第十八中学2024年数学八年级下册期末监测模拟试题含解析_第3页
江苏省南京市第十八中学2024年数学八年级下册期末监测模拟试题含解析_第4页
江苏省南京市第十八中学2024年数学八年级下册期末监测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南京市第十八中学2024年数学八年级下册期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.一个多边形的每个内角均为120°,则这个多边形是()A.四边形 B.五边形 C.六边形 D.七边形2.如图,在△ABC中,BC=15,B1、B2、…B9、C1、C2、…C9分别是AB、AC的10等分点,则B1C1+B2C2+…+B9C9的值是()A.45 B.55 C.67.5 D.1353.如图,中,,是上一点,且,是上任一点,于点,于点,下列结论:①是等腰三角形;②;③;④,其中正确的结论是()A.①② B.①③④ C.①④ D.①②③④4.如图,矩形ABCD中,AB=8,BC=4,P,Q分别是直线AB,AD上的两个动点,点在边上,,将沿翻折得到,连接,,则的最小值为()A. B. C. D.5.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=()A.4cm B.6cm C.8cm D.10cm6.方程的解为().A.2 B.1 C.-2 D.-17.下列因式分解错误的是()A.2x(x﹣2)+(2﹣x)=(x﹣2)(2x+1) B.x2+2x+1=(x+1)2C.x2y﹣xy2=xy(x﹣y) D.x2﹣y2=(x+y)(x﹣y)8.如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.2cm B.4cm C.6cm D.8cm9.如图,在中,点分别在边,,上,且,.下列四个判断中,不正确的是()A.四边形是平行四边形B.如果,那么四边形是矩形C.如果平分平分∠BAC,那么四边形AEDF是菱形D.如果AD⊥BC且AB=AC,那么四边形AEDF是正方形10.下列式子为最简二次根式的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在菱形ABCD中,∠A=70º,E,F分别是边AB和BC的中点,EP⊥CD于P,则∠FPC的度数为___________.12.某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是_______元.13.如图,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC,BC于点D,E两点,当∠DFE在△ABC内绕顶点F旋转时(点D不与A,C重合),给出以下个结论:①CD=BE;②四边形CDFE不可能是正方形;③△DFE是等腰直角三角形;④S四边形CDFE=S△ABC.上述结论中始终正确的有______.(填序号)14.如图,Rt△ABC中,∠ACB=90°,BC=AC=3,点D是BC边上一点,∠DAC=30°,点E是AD边上一点,CE绕点C逆时针旋转90°得到CF,连接DF,DF的最小值是___.15.如图,△ABC与△A'B'C'是位似图形,点O是位似中心,若OA=2AA',S△ABC=8,则S△A'B'C'=___.16.如图,在□ABCD中,对角线AC和BD交于点O,点E为AB边上的中点,OE=2.5cm,则AD=________cm。17.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为________.(填“>”或“<”)18.如图,在△ABC中,AB=AC,∠BAC=120°,S△ABC=8,点M,P,N分别是边AB,BC,AC上任意一点,则:(1)AB的长为____________.(2)PM+PN的最小值为____________.三、解答题(共66分)19.(10分)如图,一次函数y=2x+4的图象分别与x轴,y轴教育点A、点B、点C为x轴一动点。(1)求A,B两点的坐标;(2)当ΔABC的面积为6时,求点C的坐标;(3)平面内是否存在一点D,使四边形ACDB使菱形,若存在,请直接写出点D的坐标;若不存在,请说明理由。20.(6分)如图为一次函数的图象,点分别为该函数图象与轴、轴的交点.(1)求该一次函数的解析式;(2)求两点的坐标.21.(6分)如图正比例函数y=2x的图像与一次函数的图像交于点A(m,2),一次函数的图象经过点B(-2,-1)与y轴交点为C与x轴交点为D.(1)求一次函数的解析式;(2)求的面积.22.(8分)一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?23.(8分)如图,点D是△ABC的边AB上一点,连接CD,若AD=2,BD=4,∠ACD=∠B,求AC的长.24.(8分)如图,正方形,点为射线上的一个动点,点为的中点,连接,过点作于点.(1)请找出图中一对相似三角形,并证明;(2)若,以点为顶点的三角形与相似,试求出的长.25.(10分)某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.根据下表提供的信息,解答以下问题:土特产种类甲乙丙每辆汽车运载量(吨)865每吨土特产获利(百元)121610(1)设装运甲种土特产的车辆数为,装运乙种土特产的车辆数为,求与之间的函数关系式.(2)如果装运每辆土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.26.(10分)喝绿茶前需要烧水和泡茶两个工序,即需要将电热水壶中的水烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.(1)分别求出图中所对应的函数关系式,并且写出自变量x的取值范围;(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡制绿茶,问从水烧开到泡茶需要等待多长时间?

参考答案一、选择题(每小题3分,共30分)1、C【解析】由题意得,180°(n-2)=120°,解得n=6.故选C.2、C【解析】

当B1、C1是AB、AC的中点时,B1C1=BC;当B1,B2,C1,C2分别是AB,AC的三等分点时,B1C1+B2C2=BC+BC;…当B1,B2,C1,…,Cn分别是AB,AC的n等分点时,B1C1+B2C2+…+Bn﹣1Bn﹣1=BC+BC+…+BC=BC=7.1(n﹣1);当n=10时,7.1(n﹣1)=67.1;故B1C1+B2C2+…+B9C9的值是67.1.故选C.3、B【解析】

根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADB=∠C+∠DBC,然后求出∠C=∠DBC,再根据等角对等边可得DC=DB,从而判断①正确;没有条件说明∠C的度数,判断出②错误;连接PD,利用△BCD的面积列式求解即可得到PE+PF=AB,判断出③正确;过点B作BG∥AC交FP的延长线于G,根据两直线平行,内错角相等可得∠C=∠PBG,∠G=∠CFP=90°,然后求出四边形ABGF是矩形,根据矩形的对边相等可得AF=BG,根据然后利用“角角边”证明△BPE和△BPG全等,根据全等三角形对应边相等可得BG=BE,再利用勾股定理列式求解即可判断④正确.【详解】在△BCD中,∠ADB=∠C+∠DBC,∵∠ADB=2∠C,∴∠C=∠DBC,∴DC=DB,∴△DBC是等腰三角形,故①正确;无法说明∠C=30°,故②错误;连接PD,则S△BCD=BD•PE+DC•PF=DC•AB,∴PE+PF=AB,故③正确;过点B作BG∥AC交FP的延长线于G,则∠C=∠PBG,∠G=∠CFP=90°,∴∠PBG=∠DBC,四边形ABGF是矩形,∴AF=BG,在△BPE和△BPG中,,∴△BPE≌△BPG(AAS),∴BG=BE,∴AF=BE,在Rt△PBE中,PE2+BE2=BP2,即PE2+AF2=BP2,故④正确.综上所述,正确的结论有①③④.故选:B.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,勾股定理的应用,作辅助线构造出矩形和全等三角形是解题的关键.4、B【解析】

作点C关于AB的对称点H,连接PH,EH,由已知求出CE=6,CH=8,由勾股定理得出EH==10,由SAS证得△PBC≌△PBH,得出CP=PH,PF+PC=PF+PH,当E、F、P、H四点共线时,PF+PH值最小,即可得出结果.【详解】解:作点C关于AB的对称点H,连接PH,EH,如图所示:∵矩形ABCD中,AB=8,BC=4,DE=2,∴CE=CD−DE=AB−DE=6,CH=2BC=8,∴EH==10,在△PBC和△PBH中,,∴△PBC≌△PBH(SAS),∴CP=PH,∴PF+PC=PF+PH,∵EF=DE=2是定值,∴当E、F、P、H四点共线时,PF+PH值最小,最小值=10−2=8,∴PF+PD的最小值为8,故选:B.【点睛】本题考查翻折变换、矩形的性质、全等三角形的判定与性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.5、A【解析】由题意可知∠DFE=∠CDF=∠C=90°,DC=DF,∴四边形ECDF是正方形,∴DC=EC=BC-BE,∵四边形ABCD是矩形,∴BC=AD=10,∴DC=10-6=4(cm).故选A.6、A【解析】试题解析:本题首先进行去分母,然后进行解关于x的一元一次方程,从而求出答案,最后必须要对这个解进行检验.在方程的两边同时乘以x(x+1)可得:2(x+1)=3x,解得:x=2,经检验:x=2是方程的解.7、A【解析】

A、原式=(x﹣2)(2x﹣1),错误;B、原式=(x+1)2,正确;C、原式=xy(x﹣y),正确;D、原式=(x+y)(x﹣y),正确,故选A.8、A【解析】

由平行四边形对边平行根据两直线平行,内错角相等可得∠EDA=∠DEC,而DE平分∠ADC,进一步推出∠EDC=∠DEC,在同一三角形中,根据等角对等边得CE=CD,则BE可求解.【详解】根据平行四边形的性质得AD∥BC,∴∠EDA=∠DEC,又∵DE平分∠ADC,∴∠EDC=∠EDA,∴∠EDC=∠DEC,∴CD=CE=AB=6,即BE=BC﹣EC=8﹣6=1.故选:A.【点睛】本题考查了平行四边形的性质的应用,及等腰三角形的判定,属于基础题.9、D【解析】

由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形;又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形故A.

B正确;如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,∴∠FAD=∠ADF,∴AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形故C正确;如果AD⊥BC且AB=AC,那么AD平分∠BAC,同上可得四边形AEDF是菱形,故D错误.故选D10、C【解析】

判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:最简二次根式被开方数不含分母且被开方数不含能开得尽方的因数或因式,根据条件只有C满足题意,故选C.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.二、填空题(每小题3分,共24分)11、35°【解析】

根据菱形的邻角互补求出∠B,再求出BE=BF,然后根据等腰三角形两底角相等求出∠BEF,再求出∠FEP,取AD的中点G,连接FG交EP于O,然后判断出FG垂直平分EP,再根据线段垂直平分线上的点到两端点的距离相等可得EF=FP,利用等边对等角求出∠FPE,再根据∠FPC=90°-∠FPE代入数据计算即可得解.【详解】在菱形ABCD中,连接EF,如图,∵∠A=70°,∴∠B=180°-870°=110°,∵E,F分别是边AB,BC的中点,∴BE=BF,∴∠BEF=(180°-∠B)=(180°-110°)=35°,∵EP⊥CD,AB∥CD,∴∠BEP=∠CPE=90°,∴∠FEP=90°-35°=55°,取AD的中点G,连接FG交EP于O,∵点F是BC的中点,G为AD的中点,∴FG∥DC,∵EP⊥CD,∴FG垂直平分EP,∴EF=PF,∴∠FPE=∠FEP=55°,∴∠FPC=90°-∠FPE=90°-55°=35°.故答案为:35°.【点睛】本题考查了菱形的性质,线段垂直平分线上的点到两端点的距离相等的性质,等边对等角的性质,熟记性质并作出辅助线求出EF=PF是解题的关键,也是本题的难点.12、13【解析】试题解析:故答案为点睛:题目主要考查加权平均数.分别用单价乘以相应的百分比然后相加,计算即可得解.13、①③④【解析】

首先连接CF,由等腰直角三角形的性质可得:,则证得∠DCF=∠B,∠DFC=∠EFB,然后可证得:△DCF≌△EBF,由全等三角形的性质可得CD=BE,DF=EF,也可证得S四边形CDFE=S△ABC.问题得解.【详解】解:连接CF,

∵AC=BC,∠ACB=90°,点F是AB中点,∴∠DCF=∠B=45°,

∵∠DFE=90°,

∴∠DFC+∠CFE=∠CFE+∠EFB=90°,

∴∠DFC=∠EFB,

∴△DCF≌△EBF,

∴CD=BE,故①正确;

∴DF=EF,

∴△DFE是等腰直角三角形,故③正确;

∴S△DCF=S△BEF,

∴S四边形CDFE=S△CDF+S△CEF=S△EBF+S△CEF=S△CBF=S△ABC.,故④正确.

若EF⊥BC时,则可得:四边形CDFE是矩形,

∵DF=EF,

∴四边形CDFE是正方形,故②错误.

∴结论中始终正确的有①③④.

故答案为:①③④.【点睛】此题考查了全等三角形的判定与性质,等腰直角三角形的性质,正方形的判定等知识.题目综合性很强,但难度不大,注意数形结合思想的应用.14、.【解析】

先依据条件判定△ACE≌△BCF,可得∠CBF=∠CAE=30°,即可得到点F在射线BF上,由此可得当DF⊥BF时,DF最小,依据∠DBF=30°,即可得到DF=BD=【详解】由旋转可得,FC=EC,∠ECF=90°,又∵∠ACB=90°,BC=AC=3,∴∠CAE=∠CBF,∴△ACE≌△BCF,∴∠CBF=∠CAE=30°,∴点F在射线BF上,如图,当DF⊥BF时,DF最小,又∵Rt△ACD中,∠CAD=30°,AC=3=BC,∴CD=,∴BD=3﹣,又∵∠DBF=30°,∴DF=BD=,故答案为.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,得到点F的运动轨迹是本题的难点.15、1.【解析】

解:由题易知△ABC∽△A′B′C′,因为OA=2AA′,所以OA′=OA+AA′=3AA′,所以,又S△ABC=8,所以.故答案为:1.16、5【解析】

由平行四边形的对角线互相平分得AO=OC,结合E为AB的中点,则OE为△ABC的中位线,得到BC=2OE,从而求出BC的长.【详解】∵四边形ABCD是平行四边形,∴OA=OC,又∵E为AB的中点,∴OE为△ABC的中位线,∴BC=2OE=2×2.5=5cm故答案为:5.【点睛】此题主要考查中位线的性质,解题的关键是熟知中位线的判断与性质.17、>【解析】

观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;波动越小越稳定.【详解】解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;则乙地的日平均气温的方差小,故S2甲>S2乙.故答案为:>.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.18、4;2.【解析】

过点A作,垂足为G,依据等腰三角形的性质可得到,设,则,,然后依据三角形的面积公式列方程求解即可;作点A关于BC的对称点,取,则,过点作,垂足为D,当、P、M在一条直线上且时,有最小值,其最小值.【详解】(1)如图所示:过点A作AG⊥BC,垂足为G,∵AB=AC,∠BAC=120°,∴∠ABC=30°,设AB=x,则AG,BGx,则BCx,∴BC•AG•x•x=8,解得:x=4,∴AB的长为4,故答案为:4;(2)如图所示:作点A关于BC的对称点A',取CN=CN',则PN=PN',过点A'作A'D⊥AB,垂足为D,当N'、P、M在一条直线上且MN'⊥AB时,PN+PM有最小值,最小值=MN'=DA'AB=2,故答案为:2.【点睛】本题考查了翻折的性质、轴对称最短路径、垂线段的性质,将的长度转化为的长度是解题的关键.三、解答题(共66分)19、(1)点A(-2,0),B(0,4);(2)点C(-5,0)或(1,0);(3)D(-25,4)或(25,【解析】

(1)利用坐标轴上点的特点求解即可得出结论;(2)根据△AOB的面积,可得出点C的坐标;(3)根据勾股定理求出AB的长,再利用菱形的性质可得结果,分两种情况讨论.【详解】(1)当x=0,y=4当y=0,x=-2∴点A(-2,0),B(0,4)(2)因为A(-2,0),B(0,4)∴OA=2,OB=4ΔABC的面积为-因为ΔABC的面积为6∴AC=3∵A(-2,0)∴点C(-5,0)或(1,0)(3)存在,理由:①如图:点C再A点左侧,∵A(-2,0),B(0,4),∴AB=22+42=25,∵四边形ACDB为菱形,∴AC=AB=25,∵AC②如图:点C再A点右侧,∵A(-2,0),B(0,4),∴AB=22+42=25,∵四边形ACDB为菱形,∴AC=AB=25,∵AC//__BD,∴AC=BD=AB=【点睛】本题考查了一次函数的应用、菱形的性质以及三角形的面积问题,注意掌握数形结合思想和分类讨论的思想.20、(1);(2),.【解析】

(1)将(2,-1)代入y=kx-3,得到关于k的一元一次方程,解出k,即可求出一次函数的解析式;(2)分别令x=0,y=0可得出B和A的坐标.【详解】解:(1)将代入,得:,解得,∴;(2)当时,,∴,当时,,解得:,∴.故答案为(1)y=x-3;(2)A(3,0),B(0,-3).【点睛】本题考查了待定系数法求函数解析式,难度不大,注意数形结合的运用.21、(1)一次函数的解析式为;(2)1.【解析】

(1)首先根据正比例函数解析式求得m的值,再进一步运用待定系数法求得一次函数的解析式;(2)根据(1)中的解析式,令y=0求得点C的坐标,从而求得三角形的面积.【详解】解:(1)由题可得,把点A(m,2)代入正比例函数y=2x得2=2mm=1所以点A(1,2)因为一次函数图象又经过点B(-2,-1),所以解方程组得这个一次函数的解析式为(2)因为一次函数图象与x轴的交点为D,所以点D的坐标为(-1,0)因为的底为OD=1,高为A点的纵坐标2所以【点睛】此题综合考查了待定系数法求函数解析式、直线与坐标轴的交点的求法,关键是根据正比例函数解析式求得m的值.22、(1)250;(2)甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:254元.【解析】试题分析:(1)经销商能盈利=水果箱数×每箱水果的盈利;(2)设甲店配A种水果x箱,分别表示出配给乙店的A水果,B水果的箱数,根据盈利不小于110元,列不等式求解,进一步利用经销商盈利=A种水果甲店盈利×x+B种水果甲店盈利×(10﹣x)+A种水果乙店盈利×(10﹣x)+B种水果乙店盈利×x;列出函数解析式利用函数性质求得答案即可.解:(1)经销商能盈利=5×11+5×17+5×9+5×13=5×50=250;(2)设甲店配A种水果x箱,则甲店配B种水果(10﹣x)箱,乙店配A种水果(10﹣x)箱,乙店配B种水果10﹣(10﹣x)=x箱.∵9×(10﹣x)+13x≥100,∴x≥2,经销商盈利为w=11x+17•(10﹣x)+9•(10﹣x)+13x=﹣2x+1.∵﹣2<0,∴w随x增大而减小,∴当x=3时,w值最大.甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:﹣2×3+1=254(元).23、AC=2【解析】

可证明△ACD∽△ABC,则,即得出AC2=AD•AB,从而得出AC的长.【详解】∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴AC2=AD·AB,∴AC2=12,∴AC=2(负值舍去)【点睛】本题考查了相似三角形的判定和性质,两个角相等,两个三角形相似.24、(1),见解析;(2)或.【解析】

(1)通过等角转换,可得出三角相等,即可判定;(2)首先根据已知条件求出DQ,由三角形相似的性质,列出方程,即可得解,注意分两种情况讨论.【详解】(1)根据已知条件

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论