版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省鄂州市梁子湖区吴都中学数学八年级下册期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.“已知:正比例函数与反比例函数图象相交于两点,其横坐标分别是1和﹣1,求不等式的解集.”对于这道题,某同学是这样解答的:“由图象可知:当或时,,所以不等式的解集是或”.他这种解决问题的思路体现的数学思想方法是()A.数形结合 B.转化 C.类比 D.分类讨论2.一个直角三角形的两边长分别为,则第三边长可能是()A. B. C.或2 D.3.把直线a沿水平方向平移4cm,平移后的像为直线b,则直线a与直线b之间的距离为()A.等于4cm B.小于4cmC.大于4cm D.小于或等于4cm4.一次函数y=k-2x+3的图像如图所示,则k的取值范围是(A.k>3 B.k<3 C.k>2 D.k<25.如图,在三角形ABC中,∠C=90∘,AD平分∠BAC交BC于点D,且BD=2CD,BC=6cm,则点D到A.4cm B.3cm C.2cm D.1cm6.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为()A.2 B.3 C.5 D.77.小刚家院子里的四棵小树E,F,G,H刚好在其梯形院子ABCD各边的中点上,若在四边形EFGH上种满小草,则这块草地的形状是()A.平行四边形B.矩形C.正方形D.梯形8.我市某一周每天的最高气温统计如下(单位:℃):27,28,1,28,1,30,1.这组数据的众数与中位数分别是().A.28,28 B.28,1 C.1,28 D.1,19.如图所示,过平行四边形ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中平行四边形AEMG的面积与平行四边形HCFM的面积的大小关系是()A. B.C. D.10.如图,线段经过平移得到线段,其中点,的对应点分别为点,,这四个点都在格点上.若线段上有一个点,,则点在上的对应点的坐标为A. B. C. D.11.关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1 B.k≥﹣1且k≠0 C.k≤﹣1 D.k≤1且k≠012.反比例函数图象上有三个点,,,若,则的大小关系是()A. B. C. D.二、填空题(每题4分,共24分)13.若最简二次根式与是同类二次根式,则=_______.14.已知一次函数y=ax+b的图象经过点(﹣2,0)和点(0,﹣1),则不等式ax+b>0的解集是_____.15.把直线y=x-1向下平移后过点(3,-2),则平移后所得直线的解析式为________.16.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长为_____.17.对于两个不相等的实数a、b,定义一种新的运算如下:(a+b>0),如:3*2==,那么7*(6*3)=__.18.如图,在反比例函数的图像上有点它们的横坐标依次为1,2,3,……,n,n+1,分别过点作x轴,y轴的垂线,图中所构成的阴影部分面积从左到右依次为,则Sn=__________。(用含n的代数式表示)三、解答题(共78分)19.(8分)(1);(2).20.(8分)计算题:(1);(2)已知,,求代数式的值.21.(8分)如图,在平面内,菱形ABCD的对角线相交于点O,点O又是菱形B1A1OC1的一个顶点,菱形ABCD≌菱形B1A1OC1,AB=BD=1.菱形B1A1OC1绕点O转动,求两个菱形重叠部分面积的取值范围,请说明理由.22.(10分)(1)如图,已知矩形中,点是边上的一动点(不与点、重合),过点作于点,于点,于点,猜想线段三者之间具有怎样的数量关系,并证明你的猜想;(2)如图,若点在矩形的边的延长线上,过点作于点,交的延长线于点,于点,则线段三者之间具有怎样的数量关系,直接写出你的结论;(3)如图,是正方形的对角线,在上,且,连接,点是上任一点,与点,于点,猜想线段之间具有怎样的数量关系,直接写出你的猜想.23.(10分)因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.(1)求出2018至2020年五一长假期间游客人次的年平均增长率;(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?24.(10分)如图所示,已知△ABC的三个顶点的坐标分别为A(-2,3),B(-6,0),C(-1,0).(1)请直接写出点B关于点A对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.25.(12分)已知正比例函数和反比例函数的图象都经过点A(3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后得到直线l,与反比例函数的图象交于点B(6,m),求m的值和直线l的解析式;(3)在(2)中的直线l与x轴、y轴分别交于C、D,求四边形OABC的面积.26.已知一次函数y=图象过点A(2,4),B(0,3)、题目中的矩形部分是一段因墨水污染而无法辨认的文字.(1)根据信息,求题中的一次函数的解析式.(2)根据关系式画出这个函数图象.
参考答案一、选择题(每题4分,共48分)1、A【解析】试题分析:根据数形结合法的定义可知.解:由正比例函数y1=kx(k>0)与反比例函数y2=(m>0)图象相交于A、B两点,其横坐标分别是1和﹣1,然后结合图象可以看出x>1或﹣1<x<0时,y1>y2,所以不等式kx>的解集是x>1或﹣1<x<0”.解决此题时将解析式与图象紧密结合,所以解决此题利用的数学思想方法叫做数形结合法.故选A.【点评】本题考查了反比例函数与一次函数的交点问题,数形结合法是解决函数问题经常采用的一种方法,关键是要找出图象与函数解析式之间的联系.2、C【解析】
本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边8既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】解:设第三边为x,
①当8是直角边,则62+82=x2解得x=10,
②当8是斜边,则62+x2=82,解得x=2.
∴第三边长为10或2.
故选:C.【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.3、D【解析】试题分析:本题中如果平移的方向是垂直向上或垂直向下,则平移后的两直线之间的距离为4cm;如果平移的方向不是垂直向上或垂直向下,则平移后的两直线之间的距离小于4cm;故本题选D.4、D【解析】
根据一次函数的图象得到关于k的不等式,求出k的取值范围即可.【详解】∵一次函数的图象过二、四象限,∴k−2<0,解得k<2.故选:D.【点睛】此题考查一次函数图象与系数的关系,解题关键在于判定k的大小.5、C【解析】
如图,在△ABC中,∠C=90∘,AD平分∠BAC交BC于点D,且BD=1CD,BC=9cm,则点D到AB的距离.【详解】如图,过点D作DE⊥AB于E,
∵BD:DC=1:1,BC=6,
∴DC=11+2×6=1,
∵AD平分∠BAC,∠C=90∘,
∴DE=DC=1.
故选:C.【点睛】本题考查角平分线的性质和点到直线的距离,解题的关键是掌握角平分线的性质.6、C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C.考点:众数;中位数.7、A【解析】试题分析:连接AC,BD.利用三角形的中位线定理可得EH∥FG,EH=FG.∴这块草地的形状是平行四边形.故选A.考点:1.平行四边形的判定;2.三角形中位线定理.8、D【解析】
根据中位数和众数的定义,先将这组数据按顺序依次排列,取中间的那个数即为中位数,取出现次数最多的那个数即为众数;【详解】众数:1;中位数:1;故选:D.【点睛】本题主要考查众数和中位数的定义,熟练掌握相关的定义是求解本题的关键.9、A【解析】
根据平行四边形的性质和判定得出平行四边形GBEP、GPFD,证△ABD≌△CDB,得出△ABD和△CDB的面积相等;同理得出△BEM和△MHB的面积相等,△GMD和△FDM的面积相等,相减即可求出答案.【详解】∵四边形ABCD是平行四边形,EF∥BC,HG∥AB,∴AD=BC,AB=CD,AB∥GH∥CD,AD∥EF∥BC,∴四边形HBEM、GMFD是平行四边形,在△ABD和△CDB中;∵,∴△ABD≌△CDB(SSS),即△ABD和△CDB的面积相等;同理△BEM和△MHB的面积相等,△GMD和△FDM的面积相等,故四边形AEMG和四边形HCFM的面积相等,即.故选:A.【点睛】此题考查平行四边形的性质,全等三角形的判定与性质,解题关键在于得出△ABD≌△CDB10、A【解析】
根据点A、B平移后横纵坐标的变化可得线段AB向左平移2个单位,向上平移了3个单位,然后再确定a、b的值,进而可得答案.【详解】由题意可得线段AB向左平移2个单位,向上平移了3个单位,则P(a−2,b+3)故选A.【点睛】此题主要考查了坐标与图形的变化−−平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.11、A【解析】
分两种情况讨论:(1)当时,方程为一元一次方程,必有实数根;(2)当时,方程为一元二次方程,当时,必有实数根.【详解】(1)当时,方程为一元一次方程,必有实数根;(2)当时,方程为一元二次方程,当时,必有实数根:,解得,综上所述,.故选:.【点睛】本题考查了根的判别式,要注意,先进行分类讨论,当方程是一元一次方程时,总有实数根;当方程为一元二次方程时,根的情况要通过判别式来判定.12、A【解析】
反比例函数图象在一三象限,在每个象限内,随的增大而减小,点,,,,,在图象上,且,可知点,,,在第三象限,而,在第一象限,根据函数的增减性做出判断即可.【详解】解:反比例函数图象在一三象限,随的增大而减小,又点,,,,,在图象上,且,点,,,在第三象限,,点,在第一象限,,,故选:.【点睛】考查反比例函数的图象和性质,当时,在每个象限内随的增大而减小,同时要注意在同一个象限内,不同象限的要分开比较,利用图象法则更直观.二、填空题(每题4分,共24分)13、4【解析】
根据同类二次根式的定义,被开方数相等,由此可得出关于x的方程,进而可求出x的值.【详解】解:由题意可得:解:当时,与都是最简二次根式故答案为:4.【点睛】本题考查了同类二次根式与最简二次根式的定义,掌握定义是解题的关键.14、x<﹣2【解析】
根据点A和点B的坐标得到一次函数图象经过第二、三、四象限,根据函数图象得到当x>-2时,图象在x轴上方,即y>1.【详解】解:∵一次函数y=ax+b的图象经过(-2,1)和点(1,-1),∴一次函数图象经过第二、三、四象限,∴当x<-2时,y>1,即ax+b>1,∴关于x的不等式ax+b<1的解集为x<-2.故答案为:x<-2.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.15、y=x-2【解析】
解:设直线向下平移了h个单位,y=x-2-h,过(3,-2),所以-2=3-2-h所以h=-4所以y=x-2故答案为:y=x-2.【点睛】本题考查一次函数图象左右平移,上下平移方法,口诀“左加右减,上加下减”.y=kx+b左移2个单位,y=k(x+2)+b;y=kx+b右移2个单位,y=k(x-2)+b;y=kx+b上移2个单位,y=kx+b+2;y=kx+b下移2个单位,y=kx+b-2.16、【解析】
作AM⊥BC于E,由角平分线的性质得出,设AC=2x,则BC=3x,由线段垂直平分线得出MN⊥BC,BN=CN=x,得出MN∥AE,得出,NE=x,BE=BN+EN=x,CE=CN−EN=x,再由勾股定理得出方程,解方程即可得出结果.【详解】解:作AM⊥BC于E,如图所示:∵CD平分∠ACB,∴,设AC=2x,则BC=3x,∵MN是BC的垂直平分线,∴MN⊥BC,BN=CN=x,∴MN∥AE,∴,∴NE=x,∴BE=BN+EN=x,CE=CN−EN=x,由勾股定理得:AE2=AB2−BE2=AC2−CE2,即52−(x)2=(2x)2−(x)2,解得:x=,∴AC=2x=;故答案为.【点睛】本题考查了线段垂直平分线的性质、角平分线的性质、平行线分线段成比例定理、勾股定理等知识;熟练掌握线段垂直平分线的性质和角平分线的性质,由勾股定理得出方程是解题的关键.17、【解析】试题分析:∵,,∴,即7*(6*3)=,考点:算术平方根.18、【解析】
由题意可知,每个小矩形的宽度为1,第个小矩形的长为,故将代入,可求。【详解】解:依题意得故答案为:【点睛】掌握反比例函数与面积的关系是解题的关键。三、解答题(共78分)19、(1);(2).【解析】
(1)先利用平方差公式化简后面两个括号,再根据二次根式的运算法则进行计算即可得出答案;(2)先利用平方差公式和完全平方公式进行展开,再根据二次根式的运算法则进行计算即可得出答案.【详解】解:(1)原式=(2)原式=【点睛】本题考查的是二次根式的运算,难度适中,需要熟练掌握二次根式的运算法则.20、(1);(2)12.【解析】
(1)利用以及二次根式运算法则计算即可;(2)根据=计算即可.【详解】(1)=()=;(2)∵,,∴==.【点睛】本题主要考查了二次根式的化简计算,熟练掌握相关公式是解题关键.21、≤s.【解析】
分别求出重叠部分面积的最大值,最小值即可解决问题【详解】如图1中,∵四边形ABCD是菱形,∴AB=AD,∵AB=BD,∴AB=BD=AD=1,∴△ABD是等边三角形,当AE=EB,AF=FD时,重叠部分的面积最大,最大面积=S△ABD=××12=,如图2中,当OA1与BC交于点E,OC1交AB与F时,作OG⊥AB与G,OH⊥BC于H.易证△OGF≌△OHE,∴S四边形BEOF=S四边形OGBH=×=,观察图象图象可知,在旋转过程中,重叠部分是三角形时,当点E与B重合,此时三角形的面积最小为,综上所述,重叠部分的面积S的范围为≤s≤.【点睛】本题考查菱形的性质、等边三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布22、(1),见解析;(2)或者,见解析;(3).【解析】
(1)过点作于,先得出四边形是矩形,再证明四边形是矩形,证明,求出即可;(2)过C点作CO垂直EF,可得矩形HCOF,因为HC=FO,只要证明EO=EG,最后根据AAS证明.(3)连接AC交BD于O,过点E作EH⊥AC,证明矩形FOHE,证明EG=CH,根据AAS证明.【详解】(1)答:证明:如图1,过点作于.,四边形是矩形...四边形是矩形,,且互相平分∴∠DBC=∠ACB,,又,.∴EG=CN;即;(2)或者;过C点作CO垂直EF,∵,CO⊥EF,∴矩形COHF∴CE∥BD,CH=DO∴∠DBC=∠OCE∵矩形ABCD∴∠DBC=∠ACB∵∠ECG=∠ACB∴∠ECG=∠OCE∵CO⊥EF,∴∠G=∠COE∵CE=CE∴∴EO=EG∴或者;(3).连接AC交BD于O,过点E作EH⊥AC,∵正方形ABCD∴FO⊥AC,∵EH⊥AC∴矩形FEOH,∠EHC=90°∵EG⊥BC,EF=OH∴∠EGC=90°=∠EHC∴EH∥BD∴∠HEC=∠FLE∵BL=BC∴∠GCE=∠FLE∴∠GCE=∠HEC∵EC=EC∴∴HC=GE∴【点睛】本题考查的是矩形的综合运用,熟练掌握全等三角形是解题的关键.23、(1)年平均增长率为20%;(2)每碗售价定为20元时,每天利润为6300元.【解析】
(1)根据题意设平均增长率为未知数x,再根据题意建立方程式求解.(2)根据题意设每碗售价为未知数y,再根据题意建立方程式求解.【详解】(1)设平均增长率为,则解得:(舍)·答:年平均增长率为20%(2)设每碗售价定为元时,每天利润为6300元[300+30(25-y)]=6300·解得:·∵每碗售价不超过20元,所以.【点睛】本题考查了在实际生活中对方程式的建立及求解,熟练掌握方程式的实际运用是本题解题关键.24、(1)(2,6);(2)作图见解析,点B'的坐标(0,-6);(3)(-7,3),(3,3),(-5,-3)【解析】
(1)点B关于点A对称的点的坐标为(2,6);(2)分别作出点A、B、C绕坐标原点O逆时针旋转90°后的点,然后顺次连接,并写出点B的对应点的坐标;(3)分别以AB、BC、AC为对角线,写出第四个顶点D的坐标.【详解】解:(1)点B关于点A对称的点的坐标为(2,6);(2)所作图形如图所示:,点B'的坐标为:(0,-6);(3)当以AB为对角线时,点D坐标为(-7,3);当以AC为对角线时,点D坐标为(3,3);当以BC为对角线时,点D坐标为(-5,-3).【点睛】本题考查了根据旋转变换作图,轴对称的性质,以及平行四边形的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.25、(1)正比例函数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司后勤工作计划
- 团领导讲话稿范文6篇
- 礼宾员2024年终总结(7篇)
- 2021年电竞行业研究报告
- 2024年携手发展:合伙投资合同范例
- 知识探索指南模板
- 花店企业规划方案
- 南通电商仓库租赁合同范例
- 串并联电路中电压的规律课件
- 2024年新修订房地产开发商合作合同
- 2024年江西省高考地理真题(原卷版)
- 部编版小学五年级上册道法课程纲要(知识清单)
- 经济法学-计分作业一(第1-4章权重25%)-国开-参考资料
- 山东省临沂市(2024年-2025年小学四年级语文)人教版期中考试(上学期)试卷及答案
- 护士2024思想汇报5篇
- 2024年新版全员消防安全知识培训
- Unit+10+Lesson+1+How+Closely+Connected+Are+We 高中英语北师大版(2019)选择性必修第四册
- 2024人教版道法七年级上册第二单元:成长的时空大单元整体教学设计
- 《一起来分类》(教学设计)-2024-2025学年一年级上册数学北师大版
- 肺胀(慢性阻塞性肺病)中医优势病种诊疗方案
- 第1单元圆易错题(单元测试)-2024-2025学年六年级上册数学北师大版
评论
0/150
提交评论