2024届四川省自贡市富顺第三中学数学八年级下册期末监测试题含解析_第1页
2024届四川省自贡市富顺第三中学数学八年级下册期末监测试题含解析_第2页
2024届四川省自贡市富顺第三中学数学八年级下册期末监测试题含解析_第3页
2024届四川省自贡市富顺第三中学数学八年级下册期末监测试题含解析_第4页
2024届四川省自贡市富顺第三中学数学八年级下册期末监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省自贡市富顺第三中学数学八年级下册期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在平行四边形ABCD中,AB=4,CE平分∠BCD交AD边于点E,且AE=3,则BC的长为()A.4 B.6 C.7 D.82.计算:=()A. B.4 C.2 D.33.对于一次函数y=-2x+4,下列结论错误的是()A.函数的图象与x轴的交点坐标是0,4B.函数值随自变量的增大而减小C.函数的图象不经过第三象限D.函数的图象向下平移4个单位长度得到y=-2x的图象4.如图,已知直线l1:y=3x+1和直线l2:y=mx+n交于点P(a,﹣8),则关于x的不等式3x+1<mx+n的解集为()A.x>﹣3 B.x<﹣3 C.x<﹣8 D.x>﹣85.将直线向下平移个单位长度得到新直线,则的值为()A. B. C. D.6.在下列数据6,5,7,5,8,6,6中,众数是()A.5 B.6 C.7 D.87.如图,有一个矩形纸片ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF的长为()A.5 B.6 C.7 D.88.12名同学参加了学校组织的经典诵读比赛的个人赛(12名同学成绩各不相同),按成绩取前6名进入决赛,如果小明知道自己的成绩后,要判断自己能否进入决赛,他需要知道这12名同学成绩的()A.众数 B.方差 C.中位数 D.平均数9.如图,将一个含有角的直角三角板的直角顶点放在一张宽为的矩形纸带边沿上,另一个顶点在纸带的另一边沿上,若测得三角板的一边与纸带的一边所在的直线成角,则三角板最长的长是()A. B. C. D.10.重庆、昆明两地相距700km.渝昆高速公路开通后,在重庆、昆明两地间行驶的长途客车平均速度提高了25km/h,而从重庆地到昆明的时间缩短了3小时.求长途客车原来的平均速度.设长途客车原来的平均速度为xkm/h,则根据题意可列方程为()A.700x-C.700x-二、填空题(每小题3分,共24分)11.如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是____________cm.12.计算:______________13.设是满足不等式的正整数,且关于的二次方程的两根都是正整数,则正整数的个数为_______.14.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:型号(厘米)383940414243数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是_____(用数学概念作答)15.直线与坐标轴围成的图形的面积为________.16.一次函数的图象与y轴的交点坐标________________.17.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当C点落在直线y=2x-6上时,线段BC扫过的区域面积为________.18.小李掷一枚均匀的硬币次,出现的结果如下:正、反、正、反、反、反、正、正、反、反、反、正,则出现“反面朝上”的频率为______.三、解答题(共66分)19.(10分)计算:+--20.(6分)已知反比例函数的图象与一次函数的图象交于点A(1,4)和点B(,).(1)求这两个函数的表达式;(2)观察图象,当>0时,直接写出>时自变量的取值范围;(3)如果点C与点A关于轴对称,求△ABC的面积.21.(6分)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,(1)证明:CF=EB.(2)证明:AB=AF+2EB.22.(8分)如图,在正方形中,,点是边上的动点(含端点,),连结,以所在直线为对称轴作点的对称点,连结,,,,点,,分别是线段,,的中点,连结,.(1)求证:四边形是菱形;(2)若四边形的面积为,求的长;(3)以其中两边为邻边构造平行四边形,当所构造的平行四边形恰好是菱形时,这时该菱形的面积是________.23.(8分)某中学举办“网络安全知识答题竞赛”,七、八年级根据初赛成绩各选出5名选手组成代表队参加决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)七年级a85bS七年级2八年级85c100160(1)根据图示填空:a=,b=,c=;(2)结合两队成绩的平均数和中位数进行分析,哪个代表队的决赛成绩较好?(3)计算七年级代表队决赛成绩的方差S七年级2,并判断哪一个代表队选手成绩较为稳定.24.(8分)如图,对称轴为直线x=1的抛物线经过A(﹣1,0)、C(0,3)两点,与x轴的另一个交点为B,点D在y轴上,且OB=3OD(1)求该抛物线的表达式;(2)设该抛物线上的一个动点P的横坐标为t①当0<t<3时,求四边形CDBP的面积S与t的函数关系式,并求出S的最大值;②点Q在直线BC上,若以CD为边,点C、D、Q、P为顶点的四边形是平行四边形,请求出所有符合条件的点P的坐标.25.(10分)如图,等边△ABC的边长是2,D,E分别是AB,AC的中点,延长BC至点F,使CF=BC,连接CD,EF(1)求证:CD=EF;(2)求EF的长.26.(10分)已知:如图Rt△ABC中,∠ACB=90°,CD为∠ACB的平分线,DE⊥BC于点E,DF⊥AC于点F.求证:四边形CEDF是正方形.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

由平行四边形的性质可得AD∥BC,且AD=BC,结合角平分线的性质可求得DE=DC=AB=1,则可求得AD的长,可求得答案.【详解】解:∵四边形ABCD为平行四边形,∴AB=CD=1,AD∥BC,AD=BC,∴∠DEC=∠BCE.∵CE平分∠BCD,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=1.∵AE=3,∴AD=BC=3+1=2.故选C.【点睛】本题主要考查平行四边形的性质,利用平行线的性质及角平分线的性质求得DE=DC是解题的关键.2、D【解析】

先利用二次根式的性质化简,再合并同类二次根式得出答案.【详解】解:=+2=3.故选:D.【点睛】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.3、A【解析】

分别根据一次函数的性质及函数图象平移的法则进行解答即可.【详解】A、令y=0,则x=2,因此函数的图象与x轴的交点坐标是(2,0),故A选项错误;B、因为一次函数y=-2x+4中k=-2<0,因此函数值随x的增大而减小,故C选项正确;C、因为一次函数y=-2x+4中k=-2<0,b=4>0,因此此函数的图象经过一、二、四象限,不经过第三象限,故C选项正确;D、由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=-2x的图象,故D选项正确.故选A.【点睛】本题考查的是一次函数的性质及一次函数的图象与几何变换,熟知一次函数的性质及函数图象平移的法则是解答此题的关键.4、B【解析】

先把点P坐标代入l1求出a,然后观察函数图象即可.【详解】解:∵直线l1:y=3x+1和直线l2:y=mx+n交于点P(a,﹣8),∴3a+1=﹣8,解得:a=﹣3,观察图象知:关于x的不等式3x+1<mx+n的解集为x<﹣3,故选:B.【点睛】一元一次不等式和一次函数是本题的考点,根据题意求出a的值是解题的关键.5、D【解析】

直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知:直线y=1x+1向下平移n个单位长度,得到新的直线的解析式是y=1x+1-n,则1-n=-1,解得n=1.故选:D.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.6、B【解析】

根据众数的概念进行解答即可.【详解】在数据6,5,7,5,8,6,6中,数据6出现了3次,出现次数最多,所以这组数据的众数是6,故选B.【点睛】本题考查了众数,明确众数是指一组数据中出现次数最多的数据是解题的关键.众数一定是这组数据中的数,可以不唯一.7、B【解析】

根据矩形的性质得到CD=AB=8,根据勾股定理求出CF,根据勾股定理列方程计算即可.【详解】∵四边形ABCD是矩形,∴CD=AB=8,∴DE=CD﹣CE=5,由折叠的性质可知,EF=DE=5,AF=CD=BC,在Rt△ECF中,CF==4,由勾股定理得,AF2=AB2+BF2,即(BF+4)2=82+BF2,解得,BF=6,故选:B.【点睛】本题考查的是翻转变换的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8、C【解析】

参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.【详解】由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较,故应知道中位数的多少,故选C.【点睛】本题考查了统计量的选择,包括平均数、中位数、众数、方差等,正确理解和掌握各自的意义是解题的关键.9、D【解析】

过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角边,再由等腰直角三角形求出最大边.【详解】过点C作CD⊥AD,∴CD=3,

在直角三角形ADC中,

∵∠CAD=30°,

∴AC=2CD=2×2=4,

又∵三角板是有45°角的三角板,

∴AB=AC=4,

∴BC2=AB2+AC2=42+42=32,

∴BC=,

故选D.【点睛】本题考查等腰直角三角形和含30度角的直角三角形,解题的关键是掌握等腰直角三角形和含30度角的直角三角形.10、A【解析】

设长途客车原来的平均速度为xkm/h,根据从重庆地到昆明的时间缩短了3小时,得出方程即可.【详解】解:设长途客车原来的平均速度为xkm/h,则原来从重庆地到昆明的时间为700x平均速度提高了25km/h后所花时间为700x+25,根据题意提速后所花时间缩短3∴700x故选:A.【点睛】此题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题关键.二、填空题(每小题3分,共24分)11、7.2【解析】试题分析:根据勾股定理的逆定理求出∠A=90°,根据矩形的判定得出四边形ADME是矩形,根据矩形的性质得出DE=AM,求出AM的最小值即可.解:∵在△ABC中,AB=6cm,AC=1cm,BC=10cm,∴BC2=AB2+AC2,∴∠A=90°,∵MD⊥AB,ME⊥AC,∴∠A=∠ADM=∠AEM=90°,∴四边形ADME是矩形,∴DE=AM,当AM⊥BC时,AM的长最短,根据三角形的面积公式得:AB×AC=BC×AM,∴6×1=10AM,AM=4.1(cm),即DE的最小值是4.1cm.故答案为4.1.考点:矩形的判定与性质;垂线段最短;勾股定理的逆定理.12、3【解析】

根据负整数指数幂,零指数幂进行计算即可解答【详解】原式=2×2-1=3故答案为:3【点睛】此题考查负整数指数幂,零指数幂,掌握运算法则是解题关键13、1个.【解析】

首先把方程进行整理,根据方程有两个正整数根,说明根的判别式△=b2−4ac≥0,由此可以求出m的取值范围,表达出两根,然后根据方程有两个正整数根以及m的取值范围得出m为完全平方数即可.【详解】解:将方程整理得:x2−(2m+4)x+m2+4=0,∴,,∵两根都是正整数,且是满足不等式的正整数,∴m为完全平方数即可,∴m=1,4,9,16,25,36,49,共1个,故答案为:1.【点睛】此题主要考查了含字母系数的一元二次方程,确定m为完全平方数是解决本题的关键.14、众数【解析】

商场经理要了解哪些型号最畅销,所关心的即为众数.【详解】根据题意知:对商场经理来说,最有意义的是销售数量最多衬衫的数量,即众数.故答案为:众数.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.15、1【解析】

由一次函数的解析式求得与坐标轴的交点,然后利用三角形的面积公式即可得出结论.【详解】由一次函数y=x+4可知:一次函数与x轴的交点为(-4,0),与y轴的交点为(0,4),∴其图象与两坐标轴围成的图形面积=×4×4=1.故答案为:1.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16、(0,-2)【解析】

根据一次函数与y轴的交点得横坐标等于0,将x=0代入y=x-2,可得y的值,从而可以得到一次函数y=x-2的图象与y轴的交点坐标.【详解】将x=0代入y=x−2,可得y=−2,故一次函数y=x−2的图象与y轴的交点坐标是(0,−2).故答案为:(0,-2)【点睛】此题考查一次函数图象上点的坐标特征,解题关键在于一次函数与y轴的交点得横坐标等于017、5【解析】解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=1.∵∠CAB=90°,BC=3,∴AC=4,∴A′C′=4.∵点C′在直线y=4x﹣6上,∴4x﹣6=4,解得x=3.即OA′=3,∴CC′=3﹣1=4,∴S▱BCC′B′=4×4=5(cm4).即线段BC扫过的面积为5cm4.故答案为5.18、【解析】

根据题意可知“反面朝上”一共出现7次,再利用概率公式进行计算即可【详解】“反面朝上”一共出现7次,则出现“反面朝上”的频率为【点睛】此题考查频率,解题关键在于掌握频率的计算方法三、解答题(共66分)19、2+3【解析】

根据二次根式的运算法则即可求出答案.【详解】原式=4+3﹣﹣=2+3【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算,本题属于基础题型.20、(1)反比例函数的表达式为;一次函数的表达式为(2)0<<1;(3)4【解析】

(1)根据点A的坐标求出反比例函数的解析式为,再求出B的坐标是(-2,-2),利用待定系数法求一次函数的解析式.(2)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出当>0时,一次函数的值小于反比例函数的值x的取值范围或0<x<1.(3)根据坐标与线段的转换可得出:AC、BD的长,然后根据三角形的面积公式即可求出答案.【详解】解:(1)∵点A(1,2)在的图象上,∴=1×2=2.∴反比例函数的表达式为∵点B在的图象上,∴.∴点B(-2,-2).又∵点A、B在一次函数的图象上,∴,解得.∴一次函数的表达式为.(2)由图象可知,当0<<1时,>成立(3)∵点C与点A关于轴对称,∴C(1,-2).过点B作BD⊥AC,垂足为D,则D(1,-5).∴△ABC的高BD=1=3,底为AC=2=3.∴S△ABC=AC·BD=×3×3=4.21、(1)证明见解析;(2)证明见解析.【解析】

(1)根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离即CD=DE.再根据Rt△CDF≌Rt△EDB,得CF=EB;(2)利用角平分线性质证明Rt△ADC≌Rt△ADE,AC=AE,再将线段AB进行转化.【详解】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,在Rt△CDF和Rt△EDB中,,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DC=DE.在Rt△ADC与Rt△ADE中,∴Rt△ADC≌Rt△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.【点睛】本题主要考查角平分线的性质、全等三角形的判定和性质,角平分线上的点到角两边的距离相等,斜边和一直角边对应相等的两个直角三角形全等,掌握这两个知识点是解题的关键.22、(1)证明见解析;(2);(3)或或.【解析】

(1)先利用三角形中位线定理得到,故,可得四边形为平行四边形,再根据对称性得到,即可得到,即邻边相等的平行四边形是菱形,故可求解;(2)过点作于点,过点作于点,于点,根据菱形的面积可求出,再根据中位线及正方形的性质分别求出PN,PQ,CN,AQ,设,在中,得到方程求出x即可求解;(3)过点作的垂线,分别交,于点,,分当时、当时、当时分别求出菱形的面积即可.【详解】解:(1)∵,,分别为,,的中点,∴,∴.∴四边形为平行四边形.∵与关于对称,∴,∴,∴四边形为菱形.(2)过点作于点,过点作于点,于点,如图.四边形,∴.∵为的中点,∴,∴.∵,,∴,∴.∴,∴.设,∴.在中,,即,解得,∴.(3)菱形的面积为或或.理由如下:如图,过点作的垂线,分别交,于点,.当时,点在点处,此时菱形;当时,此时是正三角形,∴,PK=BP=5cm,菱形;当时,此时是正三角形,∴则CL=CP=5cm,∴,,菱形.综上所述,菱形的面积为或或.【点睛】此题主要考查正方形的性质与判定,解题的关键是熟知菱形的性质与判定、勾股定理的应用及等边三角形的性质.23、(1)85,85,80;(2)七年级决赛成绩较好;(3)七年级代表队选手成绩比较稳定.【解析】

(1)根据平均数、中位数、众数的概念分析计算即可;(2)根据图表可知七八年级的平均分相同,因此结合两个年级的中位数来判断即可;(3)根据方差的计算公式来计算即可,然后根据“方差越小就越稳定”的特点来判断哪个队成绩稳定即可.【详解】解:(1)七年级的平均分a=,众数b=85,八年级选手的成绩是:70,75,80,100,100,故中位数c=80;故答案为85,85,80;(2)由表格可知七年级与八年级的平均分相同,七年级的中位数高,故七年级决赛成绩较好;(3)S2七年级=(分2),S2七年级<S2八年级∴七年级代表队选手成绩比较稳定.【点睛】本题主要考查了平均数、中位数、众数、方差的概念及统计意义,熟练掌握其概念是解题的关键.24、(1)y=﹣x1+1x+3(1)①t=时,S的最大值为②P(1,4)或(1,3)或(,)或(,)【解析】

(1)设所求抛物线的表达式为y=a(x+1)(x﹣3),把点C(2,3)代入表达式,即可求解;(1)①设P(t,﹣t1+1t+3),则E(t,﹣t+3),S四边形CDBP=S△BCD+S△BPC=CD•OB+PE•OB,即可求解;②分点P在点Q上方、下方两种情况讨论即可求解.【详解】(1)∵抛物线的对称轴为x=1,A(﹣1,2),∴B(3,2).∴设所求抛物线的表达式为y=a(x+1)(x﹣3),把点C(2,3)代入,得3=a(2+1)(2﹣3),解得a=﹣1,∴所求抛物线的表达式为y=﹣(x+1)(x﹣3),即y=﹣x1+1x+3;(1)①连结BC.∵B(3,2),C(2,3),∴直线BC的表达式为y=﹣x+3,∵OB=3OD,OB=OC=3,∴OD=1,CD=1,过点P作PE∥y轴,交BC于点E(如图1).设P(t,﹣t1+1t+3),则E(t,﹣t+3).∴PE=﹣t1+1t+3﹣(﹣t+3)=﹣t1+3t.S四边形CDBP=S△BCD+S△BPC=CD•OB+PE•OB,即S=×1×3+(﹣t1+3t)×3=﹣(t﹣)1+,∵a=﹣<2,且2<t<3,∴当t=时,S的最大值为;②以CD为边,点C、D、Q、P为顶点的四边形是平行四边形,则PQ∥CD,且PQ=CD=1.∵点P在抛物线上,点Q在直线BC上,∴点P(t,﹣t1+1t+3),点Q(t,﹣t+3).分两种情况讨论:(Ⅰ)如图1,当点P在点Q上方时,∴(﹣t1+1t+3)﹣(﹣t+3)=1.即t1﹣3t+1=2.解得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论