版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武汉市江汉区2024年数学八年级下册期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,将等边ABC向右平移得到DEF,其中点E与点C重合,连接BD,若AB=2,则线段BD的长为()A.2 B.4 C. D.22.如图,在平行四边形ABCD中,下列结论错误的是()A.∠BDC=∠ABD B.∠DAB=∠DCBC.AD=BC D.AC⊥BD3.下列方程中是一元二次方程的是()A.2x+1=0 B.x2+y=1 C.x2+2=0 D.4.式子在实数范围内有意义,则x的取值范围()A.x≤2 B.x<2 C.x>2 D.x≥25.如图,中,,在同一平面内,将绕点A旋转到的位置,使得,则等于()A. B. C. D.6.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在以下统计量中,该鞋厂最关注的是()A.平均数 B.中位数 C.众数 D.方差7.如图,在△ABC中,∠A=∠B=45,AB=4.以AC为边的阴影部分图形是一个正方形,则这个正方形的面积为()A.2 B.4 C.8 D.168.如图,在矩形OABC中,点B的坐标是(1,3),则AC的长是()A.3 B.2 C. D.49.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和2910.一组数据:-1、2、3、1、0,则这组数据的平均数和方差分别是()A.1,1.8 B.1.8,1 C.2,1 D.1,2二、填空题(每小题3分,共24分)11.一次函数的图象与轴的交点坐标是________.12.如果将直线平移,使其经过点,那么平移后所得直线的表达式是__________.13.若,则的取值范围为_____.14.因式分解:.15.如图,在矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的点E处,折痕的一端点G在边BC上,BG=1.如图1,当折痕的另一端点F在AB边上时,EFG的面积为_____;如图2,当折痕的另一端点F在AD边上时,折痕GF的长为_____.16.如图,在矩形ABCD中,AB=1,BC=7,将矩形ABCD绕点C逆时针旋转90°得到矩形A′B′CD′,点E、F分别是BD、B′D′的中点,则EF的长度为________cm.17.某商品的标价比成本高,当该商品降价出售时,为了不亏本,降价幅度不得超过,若用表示,则___.18.一次函数y=2x+6的图象如图所示,则不等式2x+6>0的解集是________,当y≤3时,x的取值范围是________.三、解答题(共66分)19.(10分)用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,已知点,点和直线.(1)在直线上求作一点,使最短;(2)请在直线上任取一点(点与点不重合),连接和,试说明.20.(6分)为创建“国家园林城市”,某校举行了以“爱我黄石”为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50≤x<100,并制作了频数分布直方图,如图.根据以上信息,解答下列问题:(1)请补全频数分布直方图;(2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80≤x<90的选手中应抽多少人?(3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?21.(6分)已知一次函数的图象过点和,求这个一次函数的解析式.22.(8分)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题(1)画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1,并写出点C1的坐标;(2)画出将△ABC关于原点O对称的图形△A2B2C2,并写出点C2的坐标.23.(8分)如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(-3,32(1)直接写出B、C、D三点的坐标;(1)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数y=kx(24.(8分)如图,已知直线y=kx+b交x轴于点A,交y轴于点B,直线y=2x﹣4交x轴于点D,与直线AB相交于点C(3,2).(1)根据图象,写出关于x的不等式2x﹣4>kx+b的解集;(2)若点A的坐标为(5,0),求直线AB的解析式;(3)在(2)的条件下,求四边形BODC的面积.25.(10分)进入夏季用电高峰季节,市供电局维修队接到紧急通知:要到30千米远的某乡镇进行紧急抢修,维修工骑摩托车先走,15分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点,已知抢修车的速度是摩托车速度的1.5倍,求两种车的速度.26.(10分)如图,在平面直角坐标系中,己知三个顶点的坐标分別是,,.以点为位似中心,将缩小为原来的,得到,图形的对应点为与,与,与.(1)写出所有满足条件的点的坐标_________________;(2)请在轴左侧画出满足条件的.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
过点D作DH⊥CF于H,由平移的性质可得△DEF是等边三角形,由等边三角形的性质可求CH=1,DH=,由勾股定理可求解.【详解】解:如图,过点D作DH⊥CF于H,∵将等边△ABC向右平移得到△DEF,∴△DEF是等边三角形,∴DF=CF=2,∠DFC=60°,∵DH⊥CF,∴∠FDH=30°,CH=HF=1,∴DH=HF=,BH=BC+CH=3,∴BD===2,故选:D.【点睛】本题主要考查勾股定理,平移的性质,等边三角形的性质,掌握这些性质是解题的关键.2、D【解析】
根据平行四边形的性质进行判断即可.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BDC=∠ABD,故选项A正确;∵四边形ABCD是平行四边形,∴∠DAB=∠DCB,故选项B正确;∵四边形ABCD是平行四边形,∴AD=BC,故选项C正确;由四边形ABCD是平行四边形,不一定得出AC⊥BD,故选D.【点睛】本题主要考查平行四边形的性质,掌握平行四边形的相关知识点是解答本题的关键.3、C【解析】
本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.由这两个条件得到相应的关系式,再求解即可.【详解】A、该方程是一元一次方程,故本选项错误.B、该方程是二元二次方程,故本选项错误.C、该方程是一元二次方程,故本选项正确.D、该方程分式方程,故本选项错误.故选C.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).4、C【解析】分析:根据使“分式和二次根式有意义的条件”进行分析解答即可.详解:∵式子在实数范围内有意义,∴,解得:.故选C.点睛:熟记:“使分式有意义的条件是:分母的值不能为0;使二次根式有意义的条件是:被开方数为非负数”是解答本题的关键.5、A【解析】
根据平行线的性质得到∠ACD=∠CAB=63°,根据旋转变换的性质求出∠ADC=∠ACD=63°,根据三角形内角和定理求出∠CAD=54°,然后计算即可.【详解】解:∵DC∥AB,∴∠ACD=∠CAB=63°,由旋转的性质可知,AD=AC,∠DAE=∠CAB=63°,∴∠ADC=∠ACD=63°,∴∠CAD=54°,∴∠CAE=9°,∴∠BAE=54°,故选:A.【点睛】本题考查的是旋转变换,掌握平行线的性质、旋转变换的性质是解题的关键.6、C【解析】
根据众数的定义即可判断.【详解】根据题意鞋厂最关注的是众数,故选C.【点睛】此题主要考查众数的定义,解题的关键是熟知众数的性质.7、C【解析】试题解析:8、C【解析】
根据勾股定理求出OB,根据矩形的性质得出AC=OB,即可得出答案.【详解】解:连接OB,过B作BM⊥x轴于M,∵点B的坐标是(1,3),∴OM=1,BM=3,由勾股定理得:OB=∵四边形OABC是矩形,∴AC=OB,∴AC=,故选:C.【点睛】本题考查了点的坐标、矩形的性质、勾股定理等知识点,能根据矩形的性质得出AC=OB是解此题的关键.9、D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.10、D【解析】
先根据平均数计算公式列出算式进行计算,再根据平均数求出方差即可.【详解】一组数据:-1、2、3、1、0,则平均数=,方差=,故选D.【点睛】本题是对数据平均数和方差的考查,熟练掌握平均数和方差公式是解决本题的关键.二、填空题(每小题3分,共24分)11、(0,-3).【解析】
令x=0,求出y的值即可得出结论.【详解】解:当x=0时,y=-3∴一次函数的图象与y轴的交点坐标是(0,-3).故答案为:(0,-3).【点睛】本题考查的是一次函数图形上点的特征,熟知一次函数图象与坐标轴交点的算法是解答此题的关键.12、【解析】
根据平移不改变k的值可设平移后直线的解析式为y=x+b,然后将点(0,2)代入即可得出直线的函数解析式.【详解】解:设平移后直线的解析式为y=x+b,把(0,2)代入直线解析式得解得
b=2,所以平移后直线的解析式为.【点睛】本题考查了一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.13、【解析】
根据二次根式的性质可知,开方结果大于等于0,于是1-a≥0,解不等式即可.【详解】∵,∴1−a≥0,∴a≤1,故答案是a≤1.【点睛】本题考查二次根式的性质与化简,能根据任意一个非负数的算术平方根都大于等于0得出1−a≥0是解决本题的关键.14、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.15、254【解析】
(1)先利用翻折变换的性质以及勾股定理求出AE的长,进而利用勾股定理求出AF和EF的长,利用三角形的面积公式即可得出△EFG的面积;(2)首先证明四边形BGEF是平行四边形,再利用BG=EG,得出四边形BGEF是菱形,再利用菱形性质求出FG的长.【详解】解:(1)如图1过G作GH⊥AD在Rt△GHE中,GE=BG=1,GH=8所以,EH==6,设AF=x,则则∴解得:x=3∴AF=3,BF=EF=5故△EFG的面积为:×5×1=25;(2)如图2,过F作FK⊥BG于K∵四边形ABCD是矩形∴,∴四边形BGEF是平行四边形由对称性知,BG=EG∴四边形BGEF是菱形∴BG=BF=1,AB=8,AF=6∴KG=4∴FG=.【点睛】本题主要考查了翻折,勾股定理,矩形的性质,平行四边形和菱形的性质与判定,熟练掌握相关几何证明方法是解决本题的关键.16、5【解析】【分析】如图,连接AC、A′C,AA′,由矩形的性质和勾股定理求出AC长,由矩形的性质得出E是AC的中点,F是A′C的中点,证出EF是△ACA′的中位线,由三角形中位线定理得出EF=AA′,由等腰直角三角形的性质得出AA′=AC,即可得出结果.【详解】如图,连接AC、A′C,AA′,∵矩形ABCD绕点C逆时针旋转90°得到矩形A′B′CD′,∴∠ACA′=90°,∠ABC=90°,∴AC=,AC=BD=A′C=B′D′,AC与BD互相平分,A′C与B′D′互相平分,∵点E、F分别是BD、B′D′的中点,∴E是AC的中点,F是A′C的中点,∵∠ACA′=90°,∴△ACA′是等腰直角三角形,∴AA′=AC==10,∴EF=AA′=5,故答案为5.【点睛】本题考查了矩形的性质、旋转的性质、勾股定理、等腰直角三角形的判定与性质,三角形的中位线定理,熟练掌握矩形的性质,由三角形的中位线定理求出EF长是解决问题的关键.17、【解析】本题主要考查列代数式.此题中最大的降价率即是保证售价和成本价相等,可以把成本价看作单位1,根据题意即可列式.解:设成本价是1,则(1+p%)(1-d%)=1.1-d%=,18、x>﹣3x≤﹣【解析】当x>−3时,2x+6>0;解不等式2x+6⩽3得x⩽﹣,即当x⩽﹣时,y⩽3.故答案为x>−3;x⩽﹣.三、解答题(共66分)19、(1)作图见解析;(2)证明见解析【解析】
(1)根据题意,做点A关于直线的对称点,连接交直线与点P即可;(2)根据两点之间线段最短,结合三角形两边之和大于第三边即可证得.【详解】(1)作点关于直线的对称点,连接交直线于,则点即为所求,作图如下:(2)在直线上任取另一点,连接、、,∵点与关于直线成轴对称,点在直线上,∴,,∵,∴即,∴,∴最小.【点睛】本题考查了点对称的性质,“将军饮马”模型求同侧线段之和最短,三角形三边关系的应用,掌握点的对称性和两点之间线段最短是解题的关键.20、(1)见解析;(2)8;(3)80分【解析】
(1)利用总人数200减去其它各组的人数即可求得第二组的人数,从而作出直方图;(2)设抽了x人,根据各层抽取的人数的比例相等,即可列方程求解;(3)利用总人数乘以一等奖的人数,据此即可判断.【详解】解:(1)200﹣(35+40+70+10)=45,如下图:(2)设抽了x人,则,解得x=8;(3)依题意知获一等奖的人数为200×25%=50(人).则一等奖的分数线是80分.21、.【解析】
设一次函数解析式为y=kx+b,把两个已知点的坐标代入得到b、k的方程组,然后解方程组即可.【详解】解:设这个一次函数的解析式为,把,代入中,得,解得,所以一次函数的解析式为.【点睛】考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.22、(1)见解析,(﹣3,﹣1);(1)见解析,(﹣3,﹣1)【解析】
(1)利用点平移的坐标变换规律写出点A1、B1、C1的坐标,然后描点即可;(1)根据关于原点对称的点的坐标特征写点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1.【详解】解:(1)如图,△A1B1C1为所作,点C1的坐标为(﹣1,1);(1)如图,△A1B1C1为所作,点C1的坐标为(﹣3,﹣1).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.23、(2)B(-3,12),C(-1,12),D(-1,32【解析】试题分析:(2)由矩形的性质即可得出结论;(2)根据平移的性质将矩形ABCD向右平移m个单位,得到A′(-3+m,),C(-1+m,12),由点A′,C′在反比例函数y=kx(x>0)的图象上,得到方程试题解析:(2)∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=2,∵A(-3,32),AD∥x轴,∴B(-3,12),C(-1,12),D(-1(2)∵将矩形ABCD向右平移m个单位,∴A′(-3+m,),C(-1+m,12),∵点A′,C′在反比例函数y=kx(x>0)的图象上,∴32(-3+m)=12(-1+m)考点:2.反比例函数综合题;2.坐标与图形变化-平移.24、(1)x>3(2)y=-x+5(3)9.5【解析】
(1)根据C点坐标结合图象可直接得到答案;(2)利用待定系数法把点A(5,0),C(3,2)代入y=kx+b可得关于k、b得方程组,再解方程组即可;(3)由直线解析式求得点A、点B和点D的坐标,进而根据S四边形BODC=S△AOB-S△ACD进行求解即可得.【详解】(1)根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐饮行业食品安全事件应急方案
- 土方工程施工安全管理方案
- 2024年二手挖掘机维修服务合同及相关补充协议
- 2024年互联网数据中心服务器维保服务合同
- 医疗器械质量管理方案
- 2024年中介服务合同信息服务费支付与佣金分配办法
- 塑料加工酸碱废气处理方案
- 2024年供应链管理服务合同:商品流通与物流配送
- 中学国庆节亲子活动方案
- 乡镇扶贫攻坚工作方案
- 供应商响应情况登记表
- 内镜室医疗质量评价体系与考核标准
- 特异体质学生登记表( 小学)
- 机械工程控制基础课后习题答案
- jgj113-2015建筑玻璃技术规范
- 金刚萨埵《百字明咒》梵文拼音标注
- 意识形态工作责任制落实情况专题汇报
- 《珍爱生命》主题班会
- 四川阿坝汶川县机关事业单位选(考)调工作人员45人55笔试参考题库答案解析版
- 社区矫正人员心得体会
- 2020财务管理学真题及答案
评论
0/150
提交评论