安徽省淮南市大通区(东部地区)2024年八年级数学第二学期期末学业水平测试试题含解析_第1页
安徽省淮南市大通区(东部地区)2024年八年级数学第二学期期末学业水平测试试题含解析_第2页
安徽省淮南市大通区(东部地区)2024年八年级数学第二学期期末学业水平测试试题含解析_第3页
安徽省淮南市大通区(东部地区)2024年八年级数学第二学期期末学业水平测试试题含解析_第4页
安徽省淮南市大通区(东部地区)2024年八年级数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省淮南市大通区(东部地区)2024年八年级数学第二学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在△ABC中,∠A=∠B=45,AB=4.以AC为边的阴影部分图形是一个正方形,则这个正方形的面积为()A.2 B.4 C.8 D.162.通过估算,估计+1的值应在()A.2~3之间 B.3~4之间 C.4~5之间 D.5~6之间3.如图,在中,点为的中点,平分,且于点,延长交于点.若,,则的长为()A.5 B.6 C.7 D.84.如图,在正方形ABCD的边BC的延长线上取一点E,使CE=AC连接AE交CD于点F,则∠AFC等于()A.112.5° B.120° C.135° D.145°5.平行四边形中,若,则的度数为().A. B. C. D.6.若关于x的一元二次方程(x-a)2=4,有一个根为1,则a的值是().A.3B.1C.-1D.-1或37.在下列各式由左到右的变形中,不是因式分解的是()A. B.C. D.8.一次函数y=x-1的图像向上平移2个单位后,不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.一家鞋店在一段时间内销售了某种运动鞋50双,各种尺码鞋的销售量如下表所示,你认为商家更应该关注鞋子尺码的()尺码2222.52323.52424.525销售量/双46620455A.平均数 B.中位数 C.众数 D.方差10.如图,已知点P是∠AOB平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm.若点C是OB上一个动点,则PC的最小值为()cm.A.7 B.6 C.5 D.411.以下列长度(单位:cm)为边长的三角形是直角三角形的是()A.3,4,5 B.1,2,3 C.5,7,9 D.6,10,1212.教育局组织学生篮球赛,有x支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为()A. B. C. D.二、填空题(每题4分,共24分)13.利用计算机中“几何画板”软件画出的函数和的图象如图所示.根据图象可知方程的解的个数为3个,若m,n分别为方程和的解,则m,n的大小关系是________.14.一组数据为5,7,3,,6,4.若这组数据的众数是5,则该组数据的平均数是______.15.如图,在R△ABC中,∠ABC=90°,AB=22,BC=1,BD是AC边上的中线,则BD=________。16.如图,是用形状、大小完全相同的等腰梯形镶嵌的图案,则这个图案中的等腰三角形的底角(指锐角)的度数是_____.17.一次函数y=kx+b的图象与函数y=2x+1的图象平行,且它经过点(﹣1,1),则此次函数解析式为_____.18.已知a+=,则a-=__________三、解答题(共78分)19.(8分)为了准备“欢乐颂——创意市场”,初2020级某同学到批发市场购买了、两种原材料,的单价为每件6元,的单价为每件3元.该同学的创意作品需要材料的数量是材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.(1)该同学最多购买多少件材料;(2)在该同学购买材料最多的前提下,用所购买的,两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高标价,但无人问津,于是该同学在标价的基础上降低出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了,求的值.20.(8分)如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:(1)的顶点都在方格纸的格点上,先将向右平移2个单位,再向上平移3个单位,得到,其中点、、分别是、、的对应点,试画出;(2)连接,则线段的位置关系为____,线段的数量关系为___;(3)平移过程中,线段扫过部分的面积_____.(平方单位)21.(8分)如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论;(2)当AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.22.(10分)解分式方程:.23.(10分)(1)解不等式组(2)已知A=①化简A②当x满足不等式组且x为整数时,求A的值.(3)化简24.(10分)如图,在四边形OABC中,OA∥BC,∠OAB=90°,O为原点,点C的坐标为(2,8),点A的坐标为(26,0),点D从点B出发,以每秒1个单位长度的速度沿BC向点C运动,点E同时从点O出发,以每秒3个单位长度的速度沿折线OAB运动,当点E达到点B时,点D也停止运动,从运动开始,设D(E)点运动的时间为t秒.(1)当t为何值时,四边形ABDE是矩形;(2)当t为何值时,DE=CO?(3)连接AD,记△ADE的面积为S,求S与t的函数关系式.25.(12分)(定义学习)定义:如果四边形有一组对角为直角,那么我们称这样的四边形为“对直四边形”(判断尝试)在①梯形;②矩形:③菱形中,是“对直四边形”的是哪一个.(填序号)(操作探究)在菱形ABCD中,于点E,请在边AD和CD上各找一点F,使得以点A、E、C、F组成的四边形为“对直四边形”,画出示意图,并直接写出EF的长,(实践应用)某加工厂有一批四边形板材,形状如图所示,若AB=3米,AD=1米,.现根据客户要求,需将每张四边形板材进一步分割成两个等腰三角形板材和一个“对直四边形"板材,且这两个等腰三角形的腰长相等,要求材料充分利用无剩余.求分割后得到的等腰三角形的腰长,26.如图,在四边形ABCD中,,E为BD中点,延长CD到点F,使.求证:求证:四边形ABDF为平行四边形

若,,,求四边形ABDF的面积

参考答案一、选择题(每题4分,共48分)1、C【解析】试题解析:2、B【解析】

先估算出在和之间,即可解答.【详解】,,,故选:.【点睛】本题考查了估算无理数的大小,解决本题的关键是确定在哪两个数之间,题型较好,难度不大.3、B【解析】

根据平分,且可得△ADB≌△ADN,得到BD=DN,AN=AB=4,根据三角形中位线定理求出NC,计算即可.【详解】解:∵平分,且∴,在△ADB和△ADN中,∴△ADB≌△ADN(ASA)

∴BD=DN,AN=AB=4,

∵点为的中点,

∴NC=2DM=2,

∴AC=AN+NC=6,

故选B.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,三角形的中位线平行于第三边,且等于第三边的一半.4、A【解析】

根据正方形的性质及已知条件可求得∠E的度数,从而根据外角的性质可求得∠AFC的度数.【详解】∵四边形ABCD是正方形,CE=CA,

∴∠ACE=45°+90°=135°,∠E=22.5°,

∴∠AFC=90°+22.5°=112.5°.

故答案为A.【点睛】本题考查正方形的性质,解题的关键是掌握正方形的性质.5、B【解析】

根据平行四边形的性质:邻角互补,对角线相等即可解答【详解】在平行四边形中,∴,故选:B.【点睛】本题考查平行四边形的性质,解题关键是熟练掌握平行四边形的角的性质:邻角互补,对角线相等.6、D【解析】试题分析:由题意把代入方程,即可得到关于a的方程,再解出即可.由题意得,解得-1或3,故选D.考点:方程的根的定义,解一元二次方程点评:解题的关键是熟练掌握方程的根的定义:方程的根就是使方程左右两边相等的未知数的值.7、B【解析】

根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是因式分解,故A不符合题意;B、是整式的乘法,故B符合题意;C、是因式分解,故C不符合题意;D、是因式分解,故D不符合题意;故选:B.【点睛】本题考查了因式分解的意义.熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.8、D【解析】试题解析:因为一次函数y=x-1的图象向上平移2个单位后的解析式为:y=x+1,所以图象不经过四象限,故选D.考点:一次函数图象与几何变换.9、C【解析】

根据平均数、中位数、众数、方差的意义分析判断即可,得出鞋店老板最关心的数据.【详解】解:∵众数体现数据的最集中的一点,这样可以确定进货的数量,

∴商家更应该关注鞋子尺码的众数.

故选C.【点睛】本题考查统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.10、D【解析】

根据题意由角平分线先得到是含有角的直角三角形,结合直角三角形斜边上中线的性质进而的到OP,DP的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC的最小值.【详解】∵点P是∠AOB平分线上的一点,∴∵PD⊥OA,M是OP的中点,∴∴∵点C是OB上一个动点∴当时,PC的值最小∵OP平分∠AOB,PD⊥OA,∴最小值,故选:D.【点睛】本题主要考查了角平分线的性质、含有角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键.11、A【解析】

利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】A.因为3+4=5,所以三条线段能组成直角三角形;B.因为1+2≠3,所以三条线段不能组成直角三角形;C.因为5+7≠9,所以三条线段不能组成直角三角形;D.因为6+10≠12,所以三条线段不能组成直角三角形;故选:A.【点睛】此题考查勾股定理的逆定理,难度不大12、A【解析】

先列出x支篮球队,每两队之间都比赛一场,共可以比赛x(x-1)场,再根据题意列出方程为.【详解】解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,

∴共比赛场数为,

故选:A.【点睛】本题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.二、填空题(每题4分,共24分)13、【解析】

的解可看作函数与的交点的横坐标的值,可看作函数与的交点的横坐标的值,根据两者横坐标的大小可判断m,n的大小.【详解】解:作出函数的图像,与函数和的图象分别交于一点,所对的横坐标即为m,n的值,如图所示由图像可得故答案为:【点睛】本题考查了函数与方程的关系,将方程的解与函数图像相结合是解题的关键.14、5【解析】

首先根据众数的定义:是一组数据中出现次数最多的数值,即可得出,进而可求得该组数据的平均数.【详解】解:根据题意,可得则该组数据的平均数为故答案为5.【点睛】此题主要考查众数的理解和平均数的求解,熟练掌握,即可解题.15、1.5【解析】

利用勾股定理求出AC的长,再根据直角三角形斜边上的中线等于斜边的一半,就可求出BD的长.【详解】解:在Rt△ABC中,AC=A∵BD是AC边上的中线,∴AC=2BD∴BD=3÷2=1.5故答案为:1.5【点睛】本题考查的是直角三角形的性质、勾股定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.16、60°【解析】

本题主要考查了等腰梯形的性质,平面镶嵌(密铺).关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【详解】解:由图可知,铺成的一个图形为平行四边形,而原图形为等腰梯形,则现铺成的图形的底角为:180°÷3=60°.故答案为60°.17、y=2x+3【解析】

根据图象平行可得出k=2,再将(-1,1)代入可得出函数解析式.【详解】∵函数y=kx+b的图象平行于直线y=2x+1,∴k=2,将(-1,1)代入y=2x+b得:1=-2+b,解得:b=3,∴函数解析式为:y=2x+3,故答案为:y=2x+3.【点睛】本题考查了待定系数法求一次函数解析式,关键是掌握两直线平行则k值相同.18、【解析】

通过完全平方公式即可解答.【详解】解:已知a+=,则==10,则==6,故a-=.【点睛】本题考查完全平方公式的运用,熟悉掌握是解题关键.三、解答题(共78分)19、(1)80件B种原材料;(2)1.【解析】

(1)设该同学购买x件B种原材料,则购买x件A种原材料,由购买原材料的总费用不超过480元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其内的最大正整数即可;

(2)设y=a%,根据该同学在本次活动中赚了a%,即可得出关于y的一元二次方程,解之即可得出结论.【详解】(1)设该同学购买x件B种原材料,则购买x件A种原材料,

根据题意得:6×x+3×x≤480,

解得:x≤80,

∴x最大值为80,

答:该同学最多可购买80件B种原材料.

(2)设y=a%,

根据题意得:(520+480)×(1+2y)(1-y)=(520+480)×(1+y),

整理得:4y2-y=0,

解得:y=0.1或y=0(舍去),

∴a%=0.1,a=1.

答:a的值为1.【点睛】此题考查一元二次方程的应用以及一元一次不等式的应用,解题的关键是找准等量关系,列出不等式或方程.20、(1)见解析;(2)平行,相等;(3)1.【解析】

(1)直接利用平移的性质分别得出对应点位置进而得出答案;

(2)利用平移的性质得出线段AA1、BB1的位置与数量关系;

(3)利用三角形面积求法进而得出答案.【详解】解:(1)如图所示:△A1B1C1,即为所求;

(2)线段AA1、BB1的位置关系为平行,线段AA1、BB1的数量关系为:相等.

故答案为:平行,相等;

(3)平移过程中,线段AB扫过部分的面积为:2××3×5=1.

故答案为:1.【点睛】此题考查平移变换以及三角形面积求法,正确得出对应点位置是解题关键.21、(1)AP=BQ;(1)QM的长为;(2)AM的长为.【解析】

(1)要证AP=BQ,只需证△PBA≌△QCB即可;(1)过点Q作QH⊥AB于H,如图.易得QH=BC=AB=2,BP=1,PC=1,然后运用勾股定理可求得AP(即BQ)=,BH=1.易得DC∥AB,从而有∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,即可得到∠QBA=∠C′QB,即可得到MQ=MB.设QM=x,则有MB=x,MH=x-1.在Rt△MHQ中运用勾股定理就可解决问题;(2)过点Q作QH⊥AB于H,如图,同(1)的方法求出QM的长,就可得到AM的长.【详解】解:(1)AP=BQ.理由:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠ABQ+∠CBQ=90°.∵BQ⊥AP,∴∠PAB+∠QBA=90°,∴∠PAB=∠CBQ.在△PBA和△QCB中,,∴△PBA≌△QCB,∴AP=BQ;(1)过点Q作QH⊥AB于H,如图.∵四边形ABCD是正方形,∴QH=BC=AB=2.∵BP=1PC,∴BP=1,PC=1,∴BQ=AP===,∴BH===1.∵四边形ABCD是正方形,∴DC∥AB,∴∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,∴∠QBA=∠C′QB,∴MQ=MB.设QM=x,则有MB=x,MH=x-1.在Rt△MHQ中,根据勾股定理可得x1=(x-1)1+21,解得x=.∴QM的长为;(2)过点Q作QH⊥AB于H,如图.∵四边形ABCD是正方形,BP=m,PC=n,∴QH=BC=AB=m+n.∴BQ1=AP1=AB1+PB1,∴BH1=BQ1-QH1=AB1+PB1-AB1=PB1,∴BH=PB=m.设QM=x,则有MB=QM=x,MH=x-m.在Rt△MHQ中,根据勾股定理可得x1=(x-m)1+(m+n)1,解得x=m+n+,∴AM=MB-AB=m+n+-m-n=.∴AM的长为.【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质、勾股定理、轴对称的性质等知识,设未知数,然后运用勾股定理建立方程,是求线段长度常用的方法,应熟练掌握.22、【解析】

首先方程两边乘以最简公分母,把分式方程化成整式方程,求出整式方程的解,再代入最简公分母检验即可.【详解】解:方程两边乘以得:,解这个方程得:,检验:当时,,是原方程的解;原方程的解是:.【点睛】本题考查了分式方程的解法、一元一次方程方程的解法;熟练掌握分式方程的解法,方程两边乘以最简公分母,把分式方程化成整式方程是解决问题的关键.23、(1)x≤1;(2),1;(3).【解析】

(1)根据解不等式组的方法可以解答本题;(2)①根据分式的减法可以化简A;②根据不等式组和原分式可以确定x的值,然后代入化简后A的值即可解答本题;(3)根据分式的减法可以化简题目中的式子.【详解】解:(1)由不等式①,得x≤1,由不等式②,得x<4,故原不等式组的解集为x≤1;(2)①A=,②由不等式组,得1≤x<3,∵x满足不等式组且x为整数,(x﹣1)(x+1)≠0,解得,x=2,当x=2时,A(3)【点睛】本题考查分式的化简求值、解一元一次不等式,解答本题的关键是明确分式化简求值的方法和解不等式组的方法.24、(1)t=;(2)t=6;(3)S=t2﹣13t.【解析】

(1)根据矩形的判定定理列出关系式,计算即可;(2)根据平行四边形的判定定理和性质定理解答;(3)分点E在OA上和点E在AB上两种情况,根据三角形的面积公式计算即可.【详解】(1)∵点C的坐标为(2,8),点A的坐标为(26,0),∴OA=26,BC=24,AB=8,∵D(E)点运动的时间为t秒,∴BD=t,OE=3t,当BD=AE时,四边形ABDE是矩形,即t=26﹣3t,解得,t=;(2)当CD=OE时,四边形OEDC为平行四边形,DE=OC,即24﹣t=3t,解得,t=6;(3)如图1,当点E在OA上时,AE=26﹣3t,则S=×AE×AB=×(26﹣3t)×8=﹣12t+104,当点E在AB上时,AE=3t﹣26,BD=t,则S=×AE×DB=×(3t﹣26)×t=t2﹣13t.【点睛】此题考查四边形综合题,解题关键在于利用矩形的判定定理和平行四边形的判定定理和性质来解答25、【判断尝试】②;【操作探究】EF的长为2,EF的长为;【实践应用】方案1:两个等腰三角形的腰长都为米.理由见解析,方案2:两个等腰三角形的腰长都为2米.理由见解析,方案3:两个等腰三角形的腰长都为米,理由见解析.方案4:两个等腰三角形的腰长都为米,理由见解析.【解析】

[判断尝试]根据“对直四边形”定义和①梯形;②矩形:③菱形的性质逐一分析即可解答.[操作探究]由菱形性质和30°直角三角形性质即可求得EF的长.[实践应用]先作出“对直四边形”,容易得到另两个等腰三角形,再利用等腰三角形性质和勾股定理即可求出腰长.【详解】解:[判断尝试]①梯形不可能一组对角为直角;③菱形中只有正方形的一组对角为直角,②矩形四个角都是直角,故矩形有一组对角为直角,为“对直四边形”,故答案为②,[操作探究]F在边AD上时,如图:∴四边形AECF是矩形,∴AE=CE,又∵,∴BE=1,AE=,CE=AF=1,∴在Rt△AEF中,EF==2EF的长为2.F在边CD上时,AF⊥CD,∵四边形ABCD是菱形,∴AB=AD=2,∠B=∠D=60°,又∵AE⊥BC,∴∠BAE=∠BAF=30°,∴AE=AF=,∵∠BAD=120°,∴∠EAF=60°,∴△AEF为等边三角形,∴EF=AF=AE=即:EF的长为;故答案为2,.[实践应用]方案1:如图①,作,则四边形ABCD分为等腰、等腰、“对直四边形”ABED,其

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论