版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市外国语大附属外国语学校2024年八年级下册数学期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若在实数范围内有意义,则a的取值范围是()A.a≥ B.a≤ C.a> D.a<2.下列代数式变形正确的是()A.x-yx2C.1xy÷(3.已知菱形的两条对角线分别为6和8,则菱形的面积为()A.48 B.25 C.24 D.124.在下列四个标志中,既是中心对称又是轴对称图形的是()A. B. C. D.5.如图所示,已知:点A(0,0),B(,0),C(0,1).在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第n个等边三角形的边长等于()A. B. C. D.6.下列图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.7.二次根式的值是()A.﹣3 B.3或﹣3 C.9 D.38.如果多项式能用公式法分解因式,那么k的值是()A.3 B.6 C. D.9.若一组数据1.2.3.x的极差是6,则x的值为().A.7 B.8 C.9 D.7或10.如图,点E是矩形ABCD的边DC上的点,将△AED沿着AE翻折,点D刚好落在对角线AC的中点D’处,则∠AED的度数为()A.50° B.60° C.70° D.80°11.一个直角三角形的两边长分别为,则第三边长可能是()A. B. C.或2 D.12.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于()A.20 B.15 C.10 D.5二、填空题(每题4分,共24分)13.如图所示,在ΔABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②BF∥EC;③AB=AC.从中选择一个条件使四边形BECF是菱形,你认为这个条件是____(只填写序号).
14.如图,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,……,按如图的方式放置.点A1,A2,A3,……和点C1,C2,C3……分别在直线y=x+1和x轴上,则点A6的坐标是____________.15.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=2,CD=1,则AC的长是_______.16.如图,已知函数y=x+2b和y=ax+3的图象交于点P,则不等式x+2b>ax+3的解集为________
.17.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.18.分式有意义的条件是______.三、解答题(共78分)19.(8分)已知深港两地的高铁站深圳北、九龙西两站相距约40km.现高铁与地铁冋时从深圳北出发驶向九龙西,高铁的平均速度比地铁快70km/h,当高铁到达九龙西站时,地铁恰好到达距离深圳北站12km处的福田站,求高铁的平均速度.(不考虑换乘时间).20.(8分)某车间加工1200个零件后,采用新工艺,工效提升了20%,这样加工同样多的零件就少用10h,采用新工艺前、后每小时分别加工多少个零件?21.(8分)如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.22.(10分)如图,在Rt△ABC中,∠C=90°,以点B为圆心,以适当的长为半径画弧,与∠ABC的两边相交于点E、F,分别以点E和点F为圆心,以大于EF的长为半径画弧,两弧相交于点M,作射线BM交AC于点D;若∠ABC=2∠A,证明:AD=2CD.23.(10分)如图,在中,,点、分别是、边上的中点,过点作,交的延长线于点.(1)求证:四边形是平行四边形;(2)若,,求四边形的周长.24.(10分)已知某市2018年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2018年10月份的水费为620元,求该企业2018年10月份的用水量.25.(12分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动.为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了“二十四节气之旅”项目,并开展了相关知识竞赛.该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查.收集数据如下:七年级:八年级:整理数据如下:分析数据如下:根据以上信息,回答下列问题:(1)a=______,b=______;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性);(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有_____人.26.求证:菱形的对角线互相垂直.
参考答案一、选择题(每题4分,共48分)1、A【解析】
直接利用二次根式有意义则2a+3≥0,进而得出答案.【详解】解:在实数范围内有意义,则2a+3≥0,解得:.故选:A.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.2、D【解析】
利用分式的基本性质对四个选项一一进行恒等变形,即可得出正确答案.【详解】解:A.x-yxB.-x+y2=-C.1xyD.x-yx+y故选D.【点睛】本题考查了分式的基本性质.熟练应用分式的基本性质对分式进行约分和通分是解题的关键.3、C【解析】
根据菱形的面积等于对角线乘积的一半列式进行计算即可得解.【详解】解:∵菱形的两条对角线的长度分别为6和8,
∴它的面积=×6×8=1.
故选:C.【点睛】本题考查了菱形的性质,菱形的面积可以用对角线乘积的一半求解,也可以利用底乘以高求解.4、C【解析】
根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.【详解】解:A、不是中心对称图形,是轴对称图形,故本选项不合题意;
B、既不是中心对称图形,也不是轴对称图形,故本选项不合题意;
C、既是中心对称图形又是轴对称图形,故本选项符合题意;
D、不是中心对称图形,是轴对称图形,故本选项不合题意.
故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、A【解析】
根据题目已知条件可推出,AA1=OC=,B1A2=A1B1=,依此类推,第n个等边三角形的边长等于.【详解】解:∵OB=,OC=1,
∴BC=2,
∴∠OBC=30°,∠OCB=60°.
而△AA1B1为等边三角形,∠A1AB1=60°,
∴∠COA1=30°,则∠CA1O=90°.
在Rt△CAA1中,AA1=OC=,同理得:B1A2=A1B1=,依此类推,第n个等边三角形的边长等于.【点睛】本题主要考查等边三角形的性质及解直角三角形,从而归纳出边长的规律.6、B【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A.是轴对称图形,不是中心对称图形,故此选项错误;B.是轴对称图形,也是中心对称图形,故此选项正确;C.是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项错误.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、D【解析】
本题考查二次根式的化简,.【详解】.故选D.【点睛】本题考查了根据二次根式的意义化简.二次根式化简规律:当a≥0时,=a;当a≤0时,=﹣a.8、D【解析】由于可以利用公式法分解因式,所以它是一个完全平方式,所以.故选D.9、D【解析】试题分析:根据极差的定义,分两种情况:x为最大值或最小值:当x为最大值时,;当x是最小值时,.∴x的值可能7或.故选D.考点:1.极差;2.分类思想的应用.10、B【解析】
由折叠的性质可得AD=AD'=12AC,∠D=∠AD'E=90°,∠DAE=∠CAE,可求∠ACD=30°,由直角三角形的性质可求∠AED【详解】解:∵将△AED沿着AE翻折,点D刚好落在对角线AC的中点D′处,∴AD=AD'=12AC,∠D=∠AD'E=90°,∠DAE=∠∴∠ACD=30°,∴∠DAC=60°,且∠DAE=∠CAE∴∠DAE=∠CAE=30°,且∠D=90°∴∠AED=60°故选:B.【点睛】本题考查了翻折变换,矩形的性质,熟练运用折叠的性质是本题的关键.11、C【解析】
本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边8既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】解:设第三边为x,
①当8是直角边,则62+82=x2解得x=10,
②当8是斜边,则62+x2=82,解得x=2.
∴第三边长为10或2.
故选:C.【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.12、B【解析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等边三角形.∴△ABC的周长=3AB=1.故选B二、填空题(每题4分,共24分)13、③【解析】分析:根据点D是BC的中点,点E、F分别是线段AD及其延长线上,且DE=DF,即可证明四边形BECF是平行四边形,然后根据菱形的判定定理即可作出判断.详解:∵BD=CD,DE=DF,∴四边形BECF是平行四边形,①BE⊥EC时,四边形BECF是矩形,不一定是菱形;②AB=AC时,∵D是BC的中点,∴AF是BC的中垂线,∴BE=CE,∴平行四边形BECF是菱形.③四边形BECF是平行四边形,则BF∥EC一定成立,故不一定是菱形;故答案是:②.点睛:本题考查了菱形的判定方法,菱形的判别常用三种方法:①定义;②四边相等;③对角线互相垂直平分.14、(31,32)【解析】分析:由题意结合图形可知,从左至右的第1个正方形的边长是1,第2个正方形的边长是2,第3个正方形的边长是4,……,第n个正方形的边长是,由此可得点An的纵坐标是,根据点An在直线y=x+1上可得点An的横坐标为,由此即可求得A6的坐标了.详解:由题意结合图形可知:从左至右的第1个正方形的边长是1,第2个正方形的边长是2,第3个正方形的边长是4,……,第n个正方形的边长是,∵点An的纵坐标是第n个正方形的边长,∴点An的纵坐标为,又∵点An在直线y=x+1上,∴点An的横坐标为,∴点A6的横坐标为:,点A6的纵坐标为:,即点A6的坐标为(31,32).故答案为:(31,32).点睛:读懂题意,“弄清第n个正方形的边长是,点An的纵坐标与第n个正方形边长间的关系”是解答本题的关键.15、【解析】
作DE⊥AB于E,根据角平分线的性质得到DE=DC,根据勾股定理求出BE,再根据勾股定理计算即可.【详解】解:作DE⊥AB于E,∵AD是∠BAC的平分线,∠ACB=90°,DE⊥AB,∴DE=DC=1,在Rt△ACD和Rt△AED中,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,由勾股定理得,设AC=AE=x,由勾股定理得x2+32=(x+)2,解得x=.∴AC=.故答案为:.【点睛】本题考查的是勾股定理以及角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16、x>1【解析】解:由图象可知:当x>1时,.故答案为:x>1.17、36°【解析】
由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.【详解】∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案为36°.18、x≠1【解析】分析:根据分母不为零分式有意义,可得答案.解:由有意义,得x﹣1≠0,解得x≠1有意义的条件是x≠1,故答案为:x≠1.三、解答题(共78分)19、高铁的平均速度为100km/h【解析】
设设高铁的平均速度为xkm/h,根据时间=路程÷速度,即可得出关于x的分式方程,解之经检验即可得出结论.【详解】设高铁的平均速度为xkm/h,依题意得解得x=100,经检验,x=100是原方程的解,答:高铁的平均速度为100km/h.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20、采用新工艺前每时加工20个零件,采用新工艺后每时加工1个零件.【解析】
设采用新工艺前每时加工x个零件,那么采用新工艺后每时加工1.2x个零件,根据时间=零件数÷每小时加工零件数,由等量关系:加工同样多的零件1200个少用10h,可列方程求解.【详解】设采用新工艺前每时加工x个零件,则采用新工艺后每时加工1.2x个零件,依题意有,解得x=20,经检验:x=20是原分式方程的解,且符合题意,则1.2x=1.答:采用新工艺前每时加工20个零件,采用新工艺后每时加工1个零件.【点睛】本题考查分式方程的应用和理解题意能力,关键是设出采用新工艺之前每小时加工x个,然后表示出采用新工艺后每小时加工多少个,再以时间做为等量关系列方程求解.21、详见解析.【解析】
(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE和△CBF中,∴△ADE≌△CBF,∴DE=BF.(2)由(1),可得∴△ADE≌△CBF,∴∠ADE=∠CBF,∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,∴∠DEF=∠BFE,∴DE∥BF,又∵DE=BF,∴四边形DEBF是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.22、详见解析【解析】
根据角平分线的画法和性质解答即可.【详解】证明:由题意可得:BD是∠ABC的角平分线,∵∠ABC=2∠A,在Rt△ABC中,∠C=90°,∴∠ABC=60°,∠A=30°,∴∠CBD=∠DBA=30°,∴BD=2CD,∵∠DBA=∠A=30°,∴AD=BD,∴AD=2CD.【点睛】本题考查了基本作图,关键是根据角平分线的画法和性质证明.23、(1)见解析;(2)【解析】
(1)根据三角形中位线的性质得到DE∥AB,根据平行四边形的判定定理即可得到结论;(2)连接AE,根据直角三角形的性质得到∠ABE=30°,解直角三角形即可得到结论【详解】(1)证明:如图,∵点E、F分别是BC、AC边上的中点又四边形是平行四边形(2)解:连接,,点是边上的中点,在中,由(1)知,四边形是平行四边形四边形的周长【点睛】本题考查了平行四边形的判定和性质,等腰三角形的性质,正确的识别图形是解题的关键.24、(1)y=6x﹣100;(2)1吨【解析】
(1)设y关于x的函数关系式y=kx+b,然后利用待定系数法求一次函数解析式解答;(2)把水费620元代入函数关系式解方程即可.【详解】(1)设y关于x的函数关系式y=kx+b,则:解得:,所以,y关于x的函数关系式是y=6x﹣100;(2)由图可知,当y=620时,x>50,所以,6x﹣100=620,解得:x=1.答:该企业2018年10月份的用水量为1吨.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量.25、(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设计合同终止协议书
- 甲乙丙三方买卖合同
- 北京邮电大学《教师综合技能训练三字一话》2023-2024学年第一学期期末试卷
- 2025版城市高层建筑避雷系统施工安装服务合同3篇
- 宅基地建房合同
- 开发合同范本共篇
- 2025版委托开发合同(含软件开发要求与交付标准)3篇
- 2024年中国八人更衣柜市场调查研究报告
- 2025年度自然人借款合同范本全新金融服务保障
- 二手房买卖贷款合同房地产买卖合同贷款
- GB/T 42449-2023系统与软件工程功能规模测量IFPUG方法
- 酒店装修工程预算表EXCEL模板(推荐)
- NY 5052-2001无公害食品海水养殖用水水质
- 【讲座】2020年福建省高职分类考试招生指导讲座
- 性格决定命运课件
- 学习会计基础工作规范课件
- 双面埋弧焊螺旋钢管公称外公壁厚和每米理论重量
- 富士施乐VC2265打印机使用说明SPO
- 服务态度决定客户满意度试题含答案
- 教科版四年级科学上册全册复习教学设计及知识点整理
- 重庆万科渠道制度管理办法2022
评论
0/150
提交评论