山西省大同市灵丘县2024年数学八年级下册期末教学质量检测模拟试题含解析_第1页
山西省大同市灵丘县2024年数学八年级下册期末教学质量检测模拟试题含解析_第2页
山西省大同市灵丘县2024年数学八年级下册期末教学质量检测模拟试题含解析_第3页
山西省大同市灵丘县2024年数学八年级下册期末教学质量检测模拟试题含解析_第4页
山西省大同市灵丘县2024年数学八年级下册期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省大同市灵丘县2024年数学八年级下册期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,点A是直线l外一点,在l上取两点B、C,分别以点A、C为圆心,以BC、AB的长为半径画弧,两弧交于点D,分别连接AD、CD,得到的四边形ABCD是平行四边形.根据上述作法,能判定四边形ABCD是平行四边形的条件是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行且相等的四边形是平行四边形C.两组对角分别相等的四边形是平行四边形D.两组对边分别相等的四边形是平行四边形2.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有()A.1个 B.2个 C.3个 D.4个3.某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~3月份利润的平均数是120万元B.1~5月份利润的众数是130万元C.1~5月份利润的中位数为120万元D.1~2月份利润的增长快于2~3月份利润的增长4.某班数学兴趣小组位同学的一次数学测验成绩为,,,,(单位:分),经过计算这组数据的方差为,小李和小明同学成绩均为分,若该组加入这两位同学的成绩则()A.平均数变小 B.方差变大 C.方差变小 D.方差不变5.如图,在平面直角坐标系xOy中,点P(,5)关于y轴的对称点的坐标为()A.(,) B.(1,5) C.(1.) D.(5,)6.如图,在直角坐标系中,点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AB的垂直平分线与y轴交于点C,与函数y=(x>0)的图象交于点D,连结AC,CB,BD,DA,则四边形ACBD的面积等于()A.2 B. C.4 D.47.一名射击运动员连续打靶10次,命中的环数如图所示,这位运动员命中环数的众数与中位数分别为()A.7与7 B.7与7.5 C.8与7.5 D.8与78.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是()A.2016年泰兴市八年级学生是总体 B.每一名八年级学生是个体C.500名八年级学生是总体的一个样本 D.样本容量是5009.如图,长方形的高为,底面长为,宽为,蚂蚁沿长方体表面,从点到(点见图中黑圆点)的最短距离是()A. B. C. D.10.如图,在中,已知,分别为边,的中点,连结,若,则等于()A.70º B.67.5º C.65º D.60º11.如图,在中,,,分别为,,边的中点,于,,则等于()A.32 B.16 C.8 D.1012.如图,已知函数y=x+1和y=ax+3图象交于点P,点P的横坐标为1,则关于x,y的方程组的解是()A. B. C. D.二、填空题(每题4分,共24分)13.甲,乙两车都从A地出发,沿相同的道路,以各自的速度匀速驶向B地.甲车先出发,乙车出发一段时间后追上甲并反超,乙车到达B地后,立即按原路返回,在途中再次与甲车相遇。着两车之间的路程为s(千米),与甲车行驶的时间t(小时)之间的图象如图所示.乙车从A地出发到返回A地需________小时.14.如图,在平面直角坐标系中,点A(0,4),将△ABO沿x轴向右平移得△A′B′O′,与点A对应的点A′正好落在直线y=上.则点B与点B′之间的距离为_____.15.若关于x的方程-2=会产生增根,则k的值为________16.如图,在▱ABCD中,∠A=45°,BC=2,则AB与CD之间的距离为________

.17.将直线向上平移4个单位后,所得的直线在平面直角坐标系中,不经过第_________象限.18.如图,在平面直角坐标系中,直线y=kx+b与x轴交于点A3,0,与y轴交于点B0,1,则不等式kx+b>1的解集为三、解答题(共78分)19.(8分)如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:画出图形,把截去的部分打上阴影新多边形内角和比原多边形的内角和增加了.新多边形的内角和与原多边形的内角和相等.新多边形的内角和比原多边形的内角和减少了.将多边形只截去一个角,截后形成的多边形的内角和为,求原多边形的边数.20.(8分)如图,在中,点,分别在,上,且,求证:四边形是平行四边形.21.(8分)解不等式:22.(10分)如图,在中,对角线BD平分,过点A作,交CD的延长线于点E,过点E作,交BC延长线于点F.(1)求证:四边形ABCD是菱形;(2)若求EF的长.23.(10分)在平面直角坐标系中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”.例如,点P(1,4)的“3级关联点”为Q(3×1+4,1+3×4),即Q(7,13).(1)已知点A(-2,6)的“级关联点”是点A1,点B的“2级关联点”是B1(3,3),求点A1和点B的坐标;(2)已知点M(m-1,2m)的“-3级关联点”M′位于y轴上,求M′的坐标;(3)已知点C(-1,3),D(4,3),点N(x,y)和它的“n级关联点”N′都位于线段CD上,请直接写出n的取值范围.24.(10分)已知抛物线,与轴交于、,(1)若,时,求线段的长,(2)若,时,求线段的长,(3)若一排与形状相同的抛物线在直角坐标系上如图放置,且每相邻两个的交点均在轴上,,若之间有5个它们的交点,求的取值范围.25.(12分)如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC(1)求C点的坐标;(2)如图2,在平面内是否存在一点H,使得以A、C、26.近年来,萧山区大力发展旅游业,跨湖桥遗址、湘湖二期三期、宋城千古情、河上民俗、大美进化……这些名词,相信同学们都耳熟能详了,因此近年来,我区的年游客接待量呈逐年稳步上升,2015年接待1800万人次,2015——2017年这三年累计接待游客高达5958万人次.(1)求萧山区2015——2017年年游客接待量的年平均增长率.(2)若继续呈该趋势增长,请预测2018年年游客接待量(近似到万人次).

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据题意可知,即可判断.【详解】由题意可知:,根据两组对边分别相等可以判定这个四边形为平行四边形.故选:D【点睛】本题考查了平行四边形的判定,熟知两组对边分别相等的四边形是平行四边形是解题关键.2、C【解析】①已知∠A=∠B+∠C,由∠A+∠B+∠C=180°,得2∠A=180°,所以∠A=90°,它是直角三角形;②三个内角之比为3∶4∶1.则这三个内角分别为41°,60°,71°,它是锐角三角形;③④可由勾股定理的逆定理判定是直角三角形.因此①③④是直角三角形,故选C.3、B【解析】

本题中的图为折线统计图,它反映出了数据的的多少和变化情况.由图可知,1~5月份的利润分别是100,110,130,115,130,通过这些数据依次解答选项中问题.【详解】A.1~3月份的利润分别是100,110,130,则平均数应为(100+110+130)÷3=,排除B.1~5月份的利润分别是100,110,130,115,130,众数为130,符合.C.1~5月份的利润从小到大排列分别是100,110,115,130,130,中位数为115,排除.D.1~2月份利润的增长了110-100=10,2~3月份利润的增长了130-110=20,1~2月份利润的增长慢于2~3月份利润的增长,排除.故答案为B【点睛】本题考查了通过折线统计图分析数据的平均数,中位数,众数和每月之间的变化量的计算.平均数=各数据之和÷个数.中位数:把一组数据从小到大排列,若这组数据的个数为奇数个,取最中间的数作为中位数;若这组数据的个数为偶数个,则取中间两个数的平均数为中位数.众数:出现次数最多的数据为众数.4、C【解析】

分别计算出原数据和新数据的方差即可得.【详解】解:原数据的平均数为:,方差为:;新数据的平均数为:,所以方差为:∵∴方差变小.故选择:C.【点睛】本题主要考查方差,解题的关键是掌握方差的定义和计算公式5、B【解析】根据关于纵轴的对称点:纵坐标相同,横坐标变成相反数,∴点P关于y轴的对称点的坐标是(1,5),故选B6、C【解析】

解:设,可求出,由于对角线垂直,计算对角线乘积的一半即可.【详解】设A(a,),可求出D(2a,),∵AB⊥CD,∴S四边形ACBD=AB∙CD=×2a×=4,故选:C.【点睛】本题主要考查了反比例函数系数k的几何意义以及线段垂直平分线的性质,解题的关键是设出点A和点B的坐标.7、A【解析】

根据众数的定义找出出现次数最多的数;根据中位数的定义求出最中间两个数的平均数即可.【详解】解:根据统计图可得:7出现了4次,出现的次数最多,则众数是7;∵共有10个数,∴中位数是第5和6个数的平均数,∴中位数是(7+7)÷2=7;故选:A.【点睛】此题考查了众数和中位数,用到的知识点是众数和中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数,注意众数不止一个.8、D【解析】

总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A.2019年泰兴市八年级学生的视力情况是总体,故A错误;B.每一名八年级学生的视力情况是个体,故B错误;C.从中随机调查了500名学生的视力情况是一个样本,故C错误;D.样本容量是500,故D正确;故选:D.【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握它们的定义及区别.9、D【解析】分析:要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.详解:根据题意可能的最短路线有6条,重复的不算,可以通过三条来计算比较.(见图示)根据他们相应的展开图分别计算比较:图①:;图②:;图③:.∵.故应选D.点睛:考查了轴对称-最短路线问题,本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.10、A【解析】

由题意可知DE是三角形的中位线,所以DE∥BC,由平行线的性质即可求出的度数.【详解】∵D,E分别为AB,AC的中点,∴DE是三角形的中位线,∴DE∥BC,∴∠AED=∠C=70°,故选A【点睛】此题考查平行线的性质,三角形中位线定理,难度不大11、B【解析】

利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.【详解】解:∵D、F分别是AB、BC的中点,

∴DF是△ABC的中位线,

∴DF=AC(三角形中位线定理);

又∵E是线段AC的中点,AH⊥BC,

∴EH=AC,

∴EH=DF=1.

故选B.【点睛】本题综合考查了三角形中位线定理、直角三角形斜边上的中线.三角形的中位线平行于第三边且等于第三边的一半.12、A【解析】

先把x=1代入y=x+1,得出y=2,则两个一次函数的交点P的坐标为(1,2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】解:把x=1代入y=x+1,得出y=2,函数y=x+1和y=ax+3的图象交于点P(1,2),即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故选:A.【点睛】考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.二、填空题(每题4分,共24分)13、【解析】

根据题意和函数图象中的数据可以列出相应的方程组,从而可以求得甲、乙两车的速度和乙到达B地时的时间,再根据函数图象即可求得乙车从A地出发到返回A地需的时间.【详解】解:如图,设甲车的速度为a千米/小时,乙的速度为b千米/小时,甲乙第一相遇之后在c小时,相距200千米,则,解得:,∴乙车从A地出发到返回A地需要:(小时);故答案为:【点睛】本题考查函数图象,解三元一次方程组,解答本题的明确题意,利用数形结合的思想解答.14、【解析】

根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.【详解】解:如图,连接AA′、BB′.

∵点A的坐标为(0,1),△OAB沿x轴向右平移后得到△O′A′B′,

∴点A′的纵坐标是1.

又∵点A′在直线y=x上一点,

∴1=x,解得x=.

∴点A′的坐标是(,1),

∴AA′=.

∴根据平移的性质知BB′=AA′=.

故答案为.【点睛】本题考查了平面直角坐标系中图形的平移,解题的关键是掌握平移的方向和平移的性质.15、【解析】

根据方程有增根可得x=3,把-2=去分母后,再把x=3代入即可求出k的值.【详解】∵关于x的方程-2=会产生增根,∴x-3=0,∴x=3.把-2=的两边都乘以x-3得,x-2(x-3)=-k,把x=3代入,得3=-k,∴k=-3.故答案为:-3.【点睛】本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.16、2【解析】

先由平行四边形对边相等得AD=BC,作DE⊥AE,由题意可知△ADE为等腰直角三角形,根据勾股定理可以求出DE的长度,即AB和CD之间的距离.【详解】如图,过D作DE⊥AB交AB于E,∵四边形ABCD为平行四边形,∴AD=BC=2,∵∠A=45∴△ADE为等腰直角三角形,∴AE=DE,根据勾股定理得AE2∴2DE∴DE∴DE=2即AB和CD之间的距离为2,故答案为:2【点睛】本题考查了平行四边形的性质,勾股定理,熟练利用勾股定理求直角三角形中线段长是解题的关键.17、四【解析】

根据一次函数图象的平移规律,可得答案.【详解】解:由题意得:平移后的解析式为:,即,直线经过一、二、三象限,不经过第四象限,故答案为:四.【点睛】本题考查了一次函数图象与几何变换,利用一次函数图象的平移规律是解题关键,注意求直线平移后的解析式时要注意平移时的值不变.18、x<0【解析】

根据直线y=kx+b与y轴交于点B(1,1),以及函数的增减性,即可求出不等式kx+b>1的解集.【详解】解:∵直线y=kx+b与x轴交于点A(3,1),与y轴交于点B(1,1),∴y随x的增大而减小,∴不等式kx+b>1的解集是x<1.故答案为x<1.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标三、解答题(共78分)19、(1)作图见解析;(2)15,16或1.

【解析】

(1)①过相邻两边上的点作出直线即可求解;②过一个顶点和相邻边上的点作出直线即可求解;③过相邻两边非公共顶点作出直线即可求解;(2)根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论.【详解】如图所示:设新多边形的边数为n,则,解得,若截去一个角后边数增加1,则原多边形边数为15,若截去一个角后边数不变,则原多边形边数为16,若截去一个角后边数减少1,则原多边形边数为1,故原多边形的边数可以为15,16或1.【点睛】本题主要考查了多边形的内角和公式,注意要分情况进行讨论,避免漏解.20、见解析.【解析】

先根据平行四边形的性质得AB∥CD,则利用AE=CF,则可判断四边形AECF为平行四边形.【详解】四边形是平行四边形,.又`四边形是平行四边形.【点睛】本题考查平行四边形的性质和判定,能灵活运用定理进行推理是解题的关键.21、.【解析】

根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】,,,.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.22、(1)见解析;(2)【解析】

(1)证明,得出,即可得出结论;(2)由菱形的性质得出,证明四边形ABDE是平行四边形,,得出,在中,由等腰直角三角形的性质和勾股定理即可求出EF的长.【详解】(1)证明:∵四边形ABCD是平行四边形,,∵BD平分,,,,是菱形;(2)解:∵四边形ABCD是菱形,,,∴四边形ABDE是平行四边形,,,,,是等腰直角三角形,.【点睛】本题考查了平行四边形的性质与判定、菱形的判定与性质、等腰三角形的判定以及等腰直角三角形的判定与性质;熟练掌握菱形判定与性质是解决问题的关键.23、(1)(1,1)(2)(0,﹣16)(3)【解析】

(1)根据关联点的定义,结合点的坐标即可得出结论;(2)根据关联点的定义和点M(m﹣1,2m)的“﹣3级关联点”M′位于y轴上,即可求出M′的坐标;(3)因为点C(﹣1,3),D(4,3),得到y=3,由点N(x,y)和它的“n级关联点”N′都位于线段CD上,可得到方程组,解答即可.【详解】(1)∵点A(﹣2,6)的“级关联点”是点A1,∴A1(﹣2×+6,﹣2+×6),即A1(5,1).设点B(x,y),∵点B的“2级关联点”是B1(3,3),∴解得∴B(1,1).(2)∵点M(m﹣1,2m)的“﹣3级关联点”为M′(﹣3(m﹣1)+2m,m﹣1+(﹣3)×2m),M′位于y轴上,∴﹣3(m﹣1)+2m=0,解得:m=3∴m﹣1+(﹣3)×2m=﹣16,∴M′(0,﹣16).(3)∵点N(x,y)和它的“n级关联点”N′都位于线段CD上,∴N′(nx+y,x+ny),∴,,∴x=3-3n,∴,解得.【点睛】本题考查了一次函数图象上的坐标的特征,“关联点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.24、(1)6;(2)6;(3)【解析】

(1)将,代入,求出与x轴两个交点的的横坐标,即可确定AB的长.(2)将,代入,化简得y,令y=0,求出与x轴两个交点的的横坐标,即可确定AB的长.(3)令,解得,然后确定AB的长,再根据之间有5个交点,列出不等式,求解不等式即可.【详解】解:(1)∵,,∴,令,得,,∴.(2),时,令,,,∴,∴线段的长为6.(3)令,,,此时的长,∵之间有5个交点,∴,∴.【点睛】本题考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论